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Abstract

What are the economic consequences of mining in Sub-Saharan Africa? Using a panel

of 3,635 districts from 42 Sub-Saharan African countries for the period 1992 to 2012

we investigate the effects of mining on living standards measured by night-lights.

Night-lights increase in mining districts when mineral production expands (inten-

sive margin), but large effects approximately equivalent to 16% increase in GDP are

mainly associated with new discoveries and new production (extensive margin). We

identify the effect by carefully choosing feasible but not yet mined districts as a con-

trol group. In addition, we exploit giant and major mineral discoveries as exogenous

news shocks. In spite of the large within district effects, there is little evidence of sig-

nificant spillovers to other districts reinforcing the enclave nature of mines in Africa.

Furthermore, the local effects disappear after mining activities come to an end which

is consistent with the ’resource curse’ view.
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1 Introduction

The industrial age of eighteenth and nineteenth century witnessed a coming together of

coal, iron and steel, and steam power which propelled living standards to a level un-

precedented in human history. Britain and other continental European countries were

able to successfully utilize natural resources to industrialize and improve living stan-

dards. The post-independence development experience of resource rich developing na-

tions especially in sub-Saharan Africa however have been dismal giving rise to the view

that natural resources adversely affect economic development.

Indeed, a large body of predominantly macro literature document a negative corre-

lation between growth rates of GDP per capita and resource reliance by exploiting vari-

ation in cross-national data.1 This literature broadly identifies three potential channels

through which natural resources could hinder development. First, natural resource ex-

ports could appreciate the real exchange rate thereby disadvantaging the tradable non-

resource sector (or the modern sector) of an economy (Corden and Neary, 1982). Adverse

development outcomes could be permanent, if competitiveness cannot be regained.2 Sec-

ond, over-reliance on natural resources for government revenue could give rise to cor-

ruption and weak institutions as the state would no longer require relying on the non-

resource sector as a major source of revenue (Robinson et al., 2006). Third, the high

volatilty of global commodity prices could disadvantage resource rich developing coun-

tries as they become more exposed to global shocks and macroeconomic instability (Deaton,

1999; Ramey and Ramey, 1995). While significant intellectual energy went into doc-

umenting the adverse consequences of natural resources in developing countries, es-

tablishing causality has remained somewhat elusive in this largely cross-country liter-

ature.3

Another literature that largely follows from the influential works of Rosenstein-

Rodan (1943), Singer (1950) and Murphy et al. (1989) argue that mining in a developing

country is typically an ’enclave’. It operates with very high productivity and capital in-

tensity (McMillan et al., 2014), but exhibits very little demand and supply spillovers to

institute large scale industrialization. As a result resource rich developing countries re-

main poor and underdeveloped. Even though the enclave nature of mining in Africa have

1See van der Ploeg (2011) for a survey of this literature.
2This argument may not be relevant in the Sub-Saharan African context as the manufacturing sector is

small and the exchange rate is not viewed as a key constraint for the same in Africa (Bigsten and Söderbom,
2006).

3Acknowledging the adverse consequences of natural resources, a large body of literature engage with
the question of harnessing natural wealth for economic development. See Venables (2016) for a survey.
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been actively discussed by many scholars, thorough empirical analyses of the extent of

spillovers are non-existent. The potential heterogeneous effects of a new mine as opposed

to production expansion in an existing mine also remains largely unknown. In this paper

we aim to fill the void by systematically exploring the causal effect of mineral resource

discovery and extraction on development in Sub-Saharan Africa at district and regional

levels. In particular, we distinguish between the effects of production volume expansion

in existing mines (intensive margin), new production (extensive margin), and new dis-

coveries. Using spatial econometrics and GIS we analyze the extent of spillovers from a

mine. We construct a uniform measure of economic activity at different levels of spatial

stratification using satellite data on night-time lights. This is combined with mine level

geo-referenced data on discovery and production.

The influential resource curse thesis suggests that resource wealth adversely affects

development. Ill-managed oil wealth in Nigeria and mineral wealth in the Democratic

Republic of Congo are prime examples that attract attention and shape public perception.

This narrative ignores nuances which we are able to explore using our district level geo-

coded dataset. For example, Figure 1 panels A and B reveal that mineral extraction and

mineral discovery lead to significant improvements in economic activity measured by

night-time lights. Panel A zooms into Zabre District in the Boulgou Region of Burkina

Faso. Zabre has produced her first mineral commodity, gold, in 2008. The change in the

economic fortunes of Zabre is visually apparent here via the satellite images of night-

time lights before and after gold production. In 2007 before gold production, the mean

pixel value of night-time lights in Zabre is 0.00577. But in 2008 the mean pixel value

increased by 19 percent to 0.03056. The following year 2009, Zabre again experienced an

increase in night-time lights. So much for night-time lights, what about population? In

2007, the Socioeconomic Data and Applications Centre estimates Zabre’s population to

be 135,582 and the population five years later in 2012 is estimated to be 160,150. Again

an 18 percent increase. Panel B reveals a similar story before and after the discovery of

a Sapphire mine in 1998 in the town of Ilakaka in the Ihosy district of Madagascar. The

town Ilakaka did not exist before 1998.

Using regression analysis, we find that mineral production and mineral discov-

ery significantly improves economic development at the district level in 42 sub-Saharan

African countries over the period 1992 to 2012. Night-lights increase due to mining ex-

pansion at the intensive margin. However, large effects are observed at the extensive mar-

gin following new production and new discoveries. In particular, night-lights expand by

55 percent on average due to mining expansion at the extensive margin as opposed to

2-4 percent at the intensive margin. We observe that the positive influence of mineral
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production takes effect approximately two years prior to the actual start of mineral pro-

duction. This is consistent with the view that installation of mining infrastructure and

worker arrival typically predates production.

In order to precisely identify the effect of mining on development we exploit the

exogenous variation in the discovery dates of giant and major deposits of 21 minerals.

We find that the positive effect of discovery on night-time lights enter approximately six

years after the first discovery. The magnitude of the effect of first discovery is 19 percent

on the sixth year and continues to rise to 44 percent on the tenth year. Our empirical

model also successfully negotiates placebo discovery treatments.

Mining of exhaustible resources is often viewed as transitory. Therefore, an impor-

tant task in a scientific endeavor such as ours is to ascertain what happens in mining

districts after mine closure. We find that night-time lights after mine closure decline

precipitously undoing most of the gains. This further reinforces the view that mining is

transitory which is consistent with the ’resource curse’ result in the macro literature.

A skeptic’s view of the positive effect of mining on night-lights is that it is entirely

driven by lights emanating from the mines, particularly if the location of lights coincide

with the same for the mine. Even though plausible, this view is not supported by mining

industry facts on the ground in Africa (Banerjee et al., 2015).4 Furthermore, using GIS

we are able to exclude all lights around 2 kilometer radius of a mine from our sample and

our results remain qualitatively unchanged. This is suggestive of a strong within district

effect from an active mine.

A major source of reverse causation in a study of this nature could be selection. In-

vestors could select more prosperous districts for mining rather than mining driving de-

velopment. Exploiting cross-sectional information on the six stages of mining investment

(grassroots, exploration, advanced exploration, pre-feasibility, feasibility, construction)

in 2012 and regressing them on development indicators (night-lights density, population

density, paved road density, railway density and electric grid density) in 2000 we are able

to investigate whether this is indeed the case. With the exception of population density

at the construction stage none of the variables register positive and significant effects on

the very early stages of mining investment suggesting that causality runs from mining

to development and not in the other direction. In fact railway density at the advanced

4Governments and mining corporations often try to keep workers near the mining site for lengthy pe-
riods of time by offering fixed contracts and prearranged wages. This creates mass migration and hence
growth of mining towns and cities nearby that offer services. The mineral revolution in South Africa from
the 1870s onwards is a good example, which had an impact on urbanization, agriculture, infrastructure
and local politics. The migration prompted changes in rural areas, as farms lost workers to the mines and
demand for food increased.
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exploration stage and electricity grid density at the exploration stage register weak nega-

tive effects reinforcing the observation that new mines typically open far from developed

areas.

Economic development is a general equilibrium phenomenon. Therefore, analyzing

the extent of spillovers from mines is crucial. Furthermore, focusing on the subnational

district level data might mask the fact that mining districts gain at the expense of non-

mining districts. In order to unmask such patterns we estimate spatial spillover effects

using spatial econometric techniques. We also test our model at a larger sized units of

observation: regions instead of districts. We do not find evidence of spillover beyond the

host district which attests to the enclave nature of mines in Africa.

In summary, the key contributions of our paper are as follows. First, we provide

the first estimates of the local economic effects of mining at the intensive and exten-

sive margins in Sub-Saharan Africa. Mining is extremely important economic activity

in Sub-Saharan Africa and therefore we expect our results to be of particular interest to

development economists. Second, by using data on different stages of resource extraction

and mine construction we are able to precisely estimate their effects on local economic

activity and development. To the best of our knowledge, no other study provides such

estimates. Third, we provide estimates of spillover effects of mines to surrounding areas

using spatial econometric models. We also present precise estimates of mine closure on

development. These results are entirely new.

Our paper is related to the predominantly cross-country macro literature on natu-

ral resources and economic development. Auty (2001), Gylfason (2001) and Sachs and

Warner (2001, 2005) note that resource rich countries on average grow much slower than

resource poor countries. Subsequent studies have argued that natural resources may

lower the economic performance because they strengthen powerful groups, weaken le-

gal frameworks, and foster rent-seeking activities (Tornell and Lane, 1999; Collier, 2000;

Torvik, 2002; Besley, 2007). Others have argued whether natural resources are a curse

or a blessing depends on country-specific circumstances especially institutional quality

(Mehlum et al., 2006; Robinson et al., 2006; Collier and Hoeffler, 2009; Bhattacharyya

and Hodler, 2010, 2014; Bhattacharyya and Collier, 2014), natural resource type (Isham

et al., 2005) and ethnic fractionalisation (Hodler, 2006). While these studies do not im-

ply that resource rents inevitably reduce living standards, they show that it is entirely

possible. The key innovations here are our focus on Sub-Saharan Africa and the causal

interpretation of intensive and extensive margin of mining.5 We deliver on the causal

5More recent cross-country studies relating mainly oil and conflict have used information on giant oil
discovery to mitigate the causality challenge. Cotet and Tsui (2013) and Lei and Michaels (2014) study the
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interpretation by utilizing a new mine level dataset on mineral production and discovery

in sub-Saharan Africa and relate it to night-time lights. Note that the satellite data on

night-time lights have been used by others recently as a credible measure of economic

development at the local and regional levels (Henderson et al., 2012). Michalopoulos and

Papaioannou (2013, 2014) show that night lights are highly correlated with assets, edu-

cation and other measures of development. Hodler and Raschky (2014) also use night

lights to measure economic development at the birth regions of national leaders.

Theory suggests that natural resources affect economic development through a gen-

eral equilibrium channel. Therefore, the cross-national focus of the early empirical liter-

ature is understandable. However, there has been a shift in the focus more recently with

several studies focusing on the local effects of resource extraction. For example, Aragón

and Rud (2013) analyze the effect of a Peruvian gold mine on real incomes of households

using a decade long household survey data and find positive effects. Caselli and Michaels

(2013) and Allcott and Keniston (2014) focus on the local effects of oil boom in Brazil

and shale oil and gas boom in the United States respectively. In spite of the growing in-

terest on the local effects of resource boom, most of the studies remain country or mine

specific calling into question the external validity of their findings. Furthermore, studies

on Sub-Saharan Africa remain rare. Two notable exceptions are Kotsadam and Tolonen

(2016) and Lippert (2014). The former study the effect of natural resources on female

employment in Africa and whereas the latter study the local effect of mining in Zambia.

In contrast, we study the entire continent of sub-Saharan Africa.

Our paper is also related to a more recent literature on the determinants of devel-

opment at the sub-national level. This literature makes use of satellite data on night-time

lights and city growth to measure development at the regional and subnational levels.

Michalopoulos and Papaioannou (2013, 2014) and Hodler and Raschky (2014) are ex-

amples of studies that use night-time lights. The factors identified as key determinants

of African sub-national development by this literature are pre-colonial ethnic institu-

tions (Michalopoulos and Papaioannou, 2013, 2014), birth region of leaders (Hodler and

Raschky, 2014), and colonial railroads (Jedwab et al., 2016; Jedwab and Moradi, 2016).

Michalopoulos and Papaioannou (2014) also show that national institutions do not ex-

plain sub-national variation in development in Africa.

The remainder of the paper is structured as follows: Section 2 presents the data.

Section 3 sheds light on where mining investments go before studying the local effects

of mineral production, at the intensive and extensive margins, and mineral discovery.

effect of oil on conflict. Arezki et al. (2017) analyze the impact of oil discovery on macro variables. ? study
the effect of oil and mineral discoveries on fiscal decentralization.
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Section 4 discusses general equilibrium and spillover effects of production and discovery.

Section 5 investigates the effect of mine closure. Section 6 deals with robustness and

section 7 concludes.

2 Data

We construct a panel of 3,635 districts from 42 Sub-Saharan African countries over the

period 1992 to 2012.6 Districts are the main units of observation in our study. They

correspond to the second level subnational administrative classification of sub-Saharan

Africa in 2000 obtained from (FAO GeoNetwork, 2013) (see Figure 2). The average size

of a district in our sample is 6,585 square kilometers.

As our main measure of development we use satellite data on night-time lights (“lu-

minosity”) provided by National Oceanic and Atmospheric Administration (2013). The

data is cleaned luminosity, after filtering for cloud coverage, other ephemeral lights, and

background noise. The measure comes on a scale of 0 to 63, where higher values imply

greater luminosity. The data are available at pixels of 30 arc-second dimension (equiv-

alent to one square kilometer) which is very high resolution. We calculate light density

by dividing the sum of all night-time lights pixel values within a district by the district’s

area. As an alternative measure, we also construct luminosity per capita.

The distribution of night-time lights across districts is skewed. A substantial num-

ber of observations (about 31.5 percent of the sample) take the value zero. There are

also a few extreme observations on the right tail of the distribution. To account for this,

we follow Michalopoulos and Papaioannou (2013) and Hodler and Raschky (2014) and

define the dependent variable as the natural log of night-time lights density plus 0.01.

Such transformation ensures that all available observations are used and the leverage of

outliers reduced. Note that the absence of reported night-time lights typically does not

imply darkness, and certainly not absence of economic activity (Hodler and Raschky,

2014). There are also issues with the difference between true lights emanating into space

and what is recorded by a satellite (Henderson et al., 2012). In particular, there is varia-

tion in recorded lights data across satellites. Measurement error of this nature is unlikely

to be a concern here as it is orthogonal to our estimation models. Furthermore, because all

districts in a particular year are covered by the same satellite, any cross-satellite variation

in night-time lights is already accounted for in the model by the year fixed effects.

Information on mining at the local level comes from two sources. The first source

is IntierraRMG. It provides data on production quantities and values, start-up year and

6Appendix A1 presents a list of countries included in the sample.

7



mining status for 548 industrial size mines of 21 minerals for the period 1992-2012. All

the mines are matched to the district administrative units. Where IntierraRMG do not

provide a start-up date, we consult other sources (including the website of each mining

company) and add the information. The second data source is MinEx Consulting. Their

database reports discovery and production start-up dates of 259 giant and major mineral

deposits for 11 minerals (gold, silver, platinum group elements (PGE), copper, nickel,

zinc, lead, cobalt, molybdenum, tungsten and uranium oxide) from 1950 to 2012. MinEx

codes a mineral deposit as giant if it has the capacity to generate at least USD 500 million

of annual revenue for 20 years or more accounting for fluctuations in commodity price.

A major mineral deposit is defined as one that could generate an annual revenue stream

of at least USD 50 million but may not last as long as a giant deposit. Figures 3 and 4

show the locations of industrial mines and mineral deposit discoveries respectively. In

addition, we obtain annual price data for the 21 commodities from the U.S. Geological

Survey (USGS) and extract the country level total production data of these commodities

from Minerals UK of the British Geological Survey.

Population density is an important control variable, as it exhibits a strong positive

correlation with light density (Cogneau and Dupraz, 2014). Population data is obtained

from the Socioeconomic Data and Applications Centre - Centre for International Earth

Science Information Network (SEDAC - CIESIN). Population estimates are available for

1990, 1995, and 2000, and projections for 2005, 2010, and 2015. We follow Hodler and

Raschky (2014) and aggregate the gridded population dataset to second level adminis-

trative units. We then construct annual district population 1992-2012 replacing missing

years by linear interpolation.7

We use a set of geography, climate, political economy and infrastructure variables

as controls. The geography variables are altitude, ruggedness, soil fertility, distance to

the coast, and land surface area. From the 90m Digital Elevation Database of the NASA

Shuttle Radar Topographic Mission (SRTM), we construct mean and standard deviation

of elevation. Soil fertility is expressed as the percentage of a district’s land area with

fertile soils for agricultural crops and is constructed from the index in FAO/UNESCO

Digital Soil Map of the World. The climate variables are annual rainfall from Tropical

Applications of Meteorology using Satellite data (TAMSAT), and the district’s land area

classified as tropical climate, arid climate and temperate climate (Kottek et al., 2006).

The infrastructure variables are paved road density (i.e. paved road length per square

7Despite the consistency and spatially explicit population distribution of the world the gridded popu-
lation estimates may not match the actual population at the district level. This could be seen as a standard
measurement error because population projections are not based on night-time lights.
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kilometer), railway density (i.e. railway length per square kilometer) and electric grid

density (i.e. electric transmission cable length per square kilometer). They are derived

from the African Development Bank and DIVA-GIS for the year 2000. Finally, the politi-

cal economy variables are a ’capital’ dummy variable equal to one if the district contains,

or itself is the capital city, distance to the capital city and ethnic fractionalisation con-

structed from the Ethnographic Atlas by Murdock (1959). The typical assumption here

is that proximity to the capital city is associated with better quality institutions whereas

high levels of ethnic fractionalization are associated with poor institutional quality.

With the exception of rainfall and population, our control variables are time-invariant

at the district level. Table 1 reports summary statistics on all variables used in the study.

A detailed discussion of data and sources can be found in Appendix A2.

3 Mining and Development in Sub-Saharan Africa

3.1 Intensive and Extensive Margins of Mining

We start with exploring the effect of mineral production at the intensive margin. Our

main specification uses annual data for the period 1992-2012:

LDdt = αd + ηt +Xdtβ +γMPdt + εdt (1)

where LDdt is the natural log of night-lights density plus 0.01 in district d in year

t, MPdt is the natural log of mineral production value, αd are district fixed effects, ηt
are year fixed effects, and Xdt is a vector of time-variant control variables including the

natural log of population density and rainfall. Districts without mineral production are

dropped from the regression. The coefficient of interest is γ , the elasticity of mineral

production at the intensive margin.

The value of mineral production is measured in 1992 constant US Dollars and 1992

constant commodity prices respectively. Therefore they are measures of real movement

in production quantity keeping price unchanged. Commodity prices are determined at

the world market and can fluctuate widely (Deaton, 1999). However, mining companies

may have little scope or incentive to adjust production to price fluctuations in the short-

term. Therefore, prices and demand for local inputs (wages, food, services) may be less

affected. Windfall gains and losses may then largely accrue to capital owners and/or the

state.

To study the extensive margin, we replace MPdt with a dummy variable equal to
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one if the district has - or ever had - a producing mine. Under this specification the

sample includes all districts. The estimated coefficient identifies the change in night-

lights associated with a change in a district’s status from non-mining to mining. Note

that district fixed effects absorb variation in night-lights in districts that do not change

status.

Identification comes from the temporal variation within mineral producing dis-

tricts. The validity of this strategy rests on the assumption that fluctuations in mineral

production are driven by factors external to the district. This may not be true. For ex-

ample, shocks - such as power cuts or violent conflicts - may affect both mining and

economic activity during a certain district-year and are not absorbed by the district fixed

effect. The same reasoning applies to the extensive margin. The opening of a mine can be

delayed or coincide with conditions such as opening of a new road. Keeping these caveats

in mind, the results nevertheless help to establish the stylized facts that we probe more

thoroughly later.

Columns 1-3 of Table 2 shows effects at the intensive margin. Column 1 points to a

positive association between mineral production values and night-lights. The association,

however, is stronger when using production volumes instead (column 2), and in a horse

race it is the latter that wins (column 3). In column 4 we examine the effect of mining

at the extensive margin on night-lights and find that a switch from a non-mining district

to a mining district is associated with an increase in night-lights by 55.4 percent. This is

approximately more than 13 times the effect of mining expansion at the intensive margin

and hence a large effect.

3.2 Mineral Production Onset and Development

Mines will open when and where the expected net present value of mineral extraction

(NPVME) is positive. One could conjecture that this is more likely in economically more

developed districts. For example, existing infrastructure (railroads, roads, ports, electric-

ity) may reduce the need to build one. An existing labor pool may reduce the need to

attract one. Such advantages create cost savings, rendering the NPVME more likely to

be positive. However, one can easily come up with other stories that are less clear-cut.

For example, the geology of mineral resources may be correlated with soil quality and

water availability (riverbeds); certain underlying factors might trigger local opposition to

mining.8

8Opposition may be more likely with the presence of small-scale extraction and negative externalities.
There may also be disagreement about the distribution of rents. For example, a consultant explained to the
authors how local chiefs in Sierra Leone were extracting rents from iron ore mining (for the construction of
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For our analysis, this is an important issue because it may violate the unconfound-

edness assumption thereby threatening the identification of causal estimates: Districts

that enter mineral production may do so because of certain unobservable characteristics

that are associated both with the start of mineral production (the ‘assignment’) and with

the potential outcomes.

To the best of our knowledge, there has been no systematic study that looks into

what, on average, attracts a mining industry to one particular site while ignoring oth-

ers. We can shed some light on this issue. Mining companies assess profitability of a

site going through a sequence of stages (grassroots, exploration, advanced exploration,

pre-feasibility, feasibility, construction) of filtering, which is usually referred to as “min-

ing sequence”. It covers all aspects of mining activity, but precise boundaries between

the stages may vary. The IntierraRMG dataset records six stages of mining investment

as mentioned above which we utilize here. The first three stages are predominantly ex-

ploratory whereas the last three stages determine commercial viability of a project. After

each stage, selection intensifies. So where do mining investments go?

In Table 3 we relate the stages of investment recorded in 2012 to district level in-

dicators of development observed in the year 2000. Note that all estimates in this table

are based on cross-section information. At no point are night-lights at the district level

significantly correlated with mining investments. Contrary to the original conjecture, we

observe in columns 2 and 3 that exploration and advanced exploration in mining are less

likely in districts with higher electricity grid density and railway density respectively.

This is suggestive that mining investments and especially exploration tend to take place

in remote and unexplored locations. We find in column 6 that at the construction stage

a higher population density is attracting investments. This is unsurprising given that

mining construction requires a steady supply of labor.

Keeping these results in mind, we now identify the effect of mining at the extensive

margin by dividing the data into a control and treatment group. The challenge is to

identify a suitable control group that matches the treatment group in every respect except

the treatment. We define two control groups. Firstly, we take districts that never had any

mining activity as of 2012 (control 1). While we would not expect this to be a valid control

group, the comparison is interesting in its own right. Secondly, we take districts, where

the potential was examined in a feasibility study as of 2012, but where no mining has

taken place yet (control 2). Feasibility studies are the final stage before construction.9

schools) by threatening to obstruct railroad transportation.
9We do not use the construction stage as control group, because construction by itself already constitutes

economic activity caused by mining. We aim to present an even cleaner strategy when investigating mineral
discoveries, see section 3.3.
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Still, only a subset of districts may pass from the feasibility stage to construction and

finally production. We therefore rely on the same pre-treatment trends to lend confidence

to the parallel trend assumption. In order to facilitate pre-treatment comparison, we

define the treatment group as those districts that started mineral production for the first

time between 2003 and 2012, hence we have a symmetric pre- and post-treatment period

of 1992-2002 and 2003-2012 respectively.

We first examine whether there is any systematic difference in observable character-

istics between treated and control districts. Table 4, Panel A, column 1 presents the mean

values for each observable characteristic and columns 2 and 3 present the normalized

mean difference between treatment and the two control groups.10 All observables are

time-invariant or referring to the year 2000. Column 2 indicates that treated districts are

at a relatively higher altitude and are more rugged than never mined districts. They also

have a larger land surface area, less rainfall, a more temperate climate, an ethnically more

fractionalised population, and a higher railway density. In contrast, Column 3 suggests

that the treated districts are fairly similar to feasible districts save their higher electric

grid density. We rate the latter as a better underlying characteristic, which would bias

estimate upwards.

In Table 4, Panel B we report decadal growth rates in the outcome variables for the

1992-2002 and 2003-2012 period by treatment status. We do not find any pre-existing

divergent trend in night-lights across treated and control districts prior to the production

treatment (before 2003). In contrast, during the treatment period trends significantly

diverge. After a decade night-lights in the treated districts have grown by about 50 per-

centage points more. Figure 5, showing the development in night-lights of treated and

control groups on an annual basis, confirms this result. While level differences are appar-

ent, pre-treatment trends run parallel up to the point when districts start to begin min-

eral production (in 2002) at which then they start to outgrow their counterparts. Figure 6

shows the evolution of night-lights in districts 10 years before and after the start of min-

eral production. Here, mining districts serve as their own control. The log-transformation

allows us to interpret the slope as growth rates in night-lights. We observe that districts

have a steady growth rate until two years before the start of production. Then, growth

rates strongly accelerate for a period of about 4 years. This is consistent with an interpre-

tation that infrastructure moves closer to the site one or two years prior to the actual start

of production. While growth rates slow down afterwards, they are nevertheless steeper

than compared to the pre-mining period.

10The normalised difference between treatment t and control group c is defined as ∆X = (X̄t −

X̄c)/
√

(S2
t + S2

c )/2 where X̄ and S2 refer to sample means and variances respectively.
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In sum, we observe large positive effects of mineral production at the extensive mar-

gin in sub-Saharan Africa. The effects of mining at the intensive margin is also positive

and significant even though smaller in magnitude.

3.3 Mineral Discovery and Development

In this section we relate the news shock of mineral discoveries to development. Analysing

mineral discoveries enables us to explore and mitigate potential endogeneity challenges

associated with mineral production. First, one potential concern is that districts with bet-

ter unobservable fundamentals may be more likely to enter production. Discoveries are

likely to follow a different, less selective model, because they require less capital, and

returns are largely driven by the size of the deposit which is unknown exante.11 Certain

discoveries may not enter production at all. Discoveries can be interpreted as intention-

to-treat. Second, the timing of the discovery can be considered exogenous, if discovery

represents ’news‘ to economic agents. We believe that this element of surprise is partic-

ularly likely in districts without any mining history prior to the discovery. Third, there

may be a significant delay between discovery and start of production. Our data indicates

that 10 years after a discovery, only 27.2% of the sites entered production. After 20 years,

the figure rises to 48.3% (Figure 7). Setting up mining infrastructure and attracting the

labor force to work in the mines constitute economic activity caused by mining but it typ-

ically predates production. This effect could be wrongly attributed to the pre-mining era

comparison group. In contrast, mining discovery constitutes a clean start of the experi-

ment. Overall, we can treat the discovery date as an exogenous news shock, much more

in line with the start of the experiment, enabling us to mitigate potential reverse causality

challenges associated with mineral production.

We focus on discoveries between 1992 and 2012. To identify the effect of discovery

shocks on local development, we estimate the following model:

LDdt = α̃d + η̃t +Xdtβ̃ +
10∑
j=0

γ̃jMDdt−j + ε̃dt (2)

where MDdt−j is a dummy variable equal to 1 if a mineral discovery has been made in

year t−j, 0 if no discovery has been made and missing for every year post-discovery other

than t − 10.

We restrict MDdt−j to first discoveries, that is to discoveries in districts that never

11In Section 4 we shed more light on the district characteristics that are associated with exploration and
mining investments.
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had any mining activity before, and the comparison group to non-mining districts with-

out any discoveries. This restriction serves two purposes. First, existing mining activities

may affect local development and it is difficult to disentangle this effect from the effect of

a new discovery. Second, economic agents may arguably anticipate repeated discoveries

due to the knowledge of past discoveries and geology (Lei and Michaels, 2014). In con-

trast, a discovery and its exact timing is much harder to predict for ‘virgin’ non-mining

districts.12 Thus, setting MDdt−j = 1 for first discoveries is the cleanest treatment group.

In fact, the coefficient γ̃0 tests whether there is a significant level difference between non-

mining districts and districts in which a discovery has just been made. Overall, the coef-

ficients γ̃j measure the difference in night-lights j years after a discovery.

Table 5 displays the results. In Column 1, the coefficients reflect the change in night-

lights j ={0, 1, ..., 10} years after a discovery relative to the pre-discovery era and trends in

night-lights of non-mining districts in the same year.13 The coefficient γ̃0 is indeed very

close to zero and remains small and insignificant up to four years after a mineral discov-

ery. After year 6, at j=6, however, point estimates become positive and significant and

they increase with j. At j=10, nightlights are 43.8 percentage points higher. This coeffi-

cient is below the estimate that we obtained when using the start of mineral production

as explanatory variable (column 4 in Table 2 and column 3 in Table 4). It is important

to stress that this is an average treatment effect. The increase in nightlights may be at-

tributed to two effects. First, an increasing number of districts entering production after

the discovery has been made and second, night-lights still expanding in districts where

production has already started.

The coefficients in Column 1 do not necessarily measure the effect of a single discov-

ery, as more discoveries may follow after the first discovery. In our data there are seven

districts that had more than one discovery. In Column 2, we limit the sample to the time

when there was no subsequent discovery. Coefficients remain virtually unchanged. Hav-

ing an additional discovery after the first discovery does not seem to matter much. This

again supports the view that the extensive margin of mining has a much larger effect on

development than the intensive margin.

We would expect heterogeneous effects with respect to the size of mineral deposits.

In particular, giant deposits should have a larger effect because of their higher economic

12Mineral discoveries in virgin districts are not heavily clustered in administrative regions with pre-
existing mining activities either. For the 1992-2012 period, 36 out of the 73 first discoveries occurred in
districts, where the corresponding region had no recorded mining activity as well.

13Using the same model as in equation (2) but region instead of district fixed effects, we obtain very
similar coefficients indicating that virgin districts that just experienced a discovery are, on average, hardly
different from other districts in the same administrative region that had not had a mineral discovery.
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value and because they tend to enter production more quickly than major deposits (Figure

7). We test this idea using the same specification as in equation 2, but with dummy vari-

ables MDdt−j indicating the first discovery of giant (major) deposits exclusively. Column

3 and 4 shows the estimates for giant deposits and major deposits respectively. While

standard errors are large indicating that there are no statistically significant differences

between giant and major deposits, point estimates indeed confirm a pattern by which

night-lights take off slightly earlier (at about year 5) and at a steeper rate after a dis-

covery of a giant mineral deposit.14 At year 10 after the discovery, the increase in night-

lights corresponds to 54 percentage points for giant deposits compared to a 37 percentage

points for major deposits. These are indeed large effects.

Finally, we follow a placebo strategy and test whether there are any effects for the

pre-discovery period, in other words, whether the discovery districts follow the same

trend as the virgin districts. We use model 2 replacing
∑10
j=0 γ̃jMDdt−j with

∑−1
j=−10 γ̃jMDdt−j .

Because we do not have information on night-lights 1982-1992 we study only districts

with mineral discoveries 2002-2012. This ensures that we have a full pre-discovery win-

dow of 10 years following the same 34 districts through to discovery.15 Table 6 reports

the placebo test. There is no trend in the pre-discovery coefficients, they are small and

jointly insignificant (p-val: 0.23). As an alternative, we constructed a symmetric 5-year

pre- and post-discovery window using
∑5
j=−5 γ̃jMDdt−j and the 42 districts with discov-

eries 1997-2007. Neither the pre- nor post-discovery coefficients are significant (p-val:

0.37) which is in line with results in Table 4.

4 Spillovers and General Equilibrium Effects

So far, we implicitly assumed that mining leads to some relatively broad development

within the district where the mine is located, but that effects are mostly limited to that

district. Theories of enclave development question the existence of meaningful spillover

effects: While mining industries are highly productive even in developing countries, for-

ward and backward linkages are limited. This notwithstanding, existing studies of local

development point to certain spill-overs. In their study of a large gold mine in Northern

Peru, Aragón and Rud (2013) found income effects declining with distance and being in-

significant beyond 100 km from the mine. Similarly Kotsadam and Tolonen (2016) found

14There are an average of 25 giant and 48 major deposits in our 10 year time horizon.
15If we used the full data with discoveries 1992-2012, we would observe a smaller pre-discovery window

for districts with discoveries in 1992-2001. By construction, this introduces an artificial correlation between
MDdt−j and η̃t . Note that the number of discoveries averages 3 per year and does not follow a trend even
though the years 1996, 1997, 2005 and 2006 had an unusually large number of 6 discoveries.
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effects on female employment up to a distance of 75 km. Both studies relate these effects

to local demand created by mining. In our data, distances between neighboring districts

average 69.4 km (sd: 59.5).16 While spillover effects are of fundamental interest in them-

selves, they are also potential threat for our estimation strategy, as they give rise to endo-

geneity issues. Positive (negative) spillovers would lead to an under(over-)estimation of

the true causal effect of mining activities.

We start with studying an extreme case of enclave development where the increase

in nightlights is driven by lights emanating from the industry itself, e.g. by lighting

up the immediate area of the construction site, the pit, or the workers’ houses at night.

We address this concern by dropping all light pixels around a 2 kilometer radius of a

mine and mineral discovery. Then, we re-estimate the regression models in Tables 2 and

5.17 Results, shown in Tables 7 and 8, remain qualitatively unchanged with the size of

coefficients decreasing only marginally. We therefore conclude that effects are not driven

by lights emanating from the mines.

We continue our investigation with modeling spatial spillover effects using tech-

niques from spatial econometrics. In particular, we estimate a Spatial Durbin Model

(SDM):

LDdt = αd + ηt + ρWLDdt +Xdtβ +WXdtθ +MAdtγ +WMAdtδ+ εdt (3)

where our standard model with measures of mining activities MA, controls X, dis-

trict and year fixed effects is augmented with a spatially lagged dependent variable WLD

and spatially lagged explanatory variablesWX andWMA. W denotes the spatial weights

matrix that defines the potential for interaction between each pair of districts. We define

neighbors as districts that share a common border (0/1 weights).18 Hence, WX can be

easily interpreted as X averaged over a district’s neighbors.

The SDM has certain attractive features. The parameter ρ measures the spatial cor-

relation of lights between neighboring districts. Mining activities MA may affect a dis-

trict’s night-lights LD and this change in lights may spill over to neighboring districts as

ρWLD. However, if mining has indeed less forward and backward linkages than other

sectors of the economy, then such spillover of mining induced lights would be smaller

16The minimum distance is 1.6 km and the maximum is 573.5 km. The differences in the distance are
explained by the size of the country and the number of districts within that country (see Figure 2).

17The choice of 2 kilometer is somewhat arbitrary. Note, however, that increasing the radius increasingly
excludes lights not directly produced by the mine. So there is a trade-off between type I and type II errors,
which is difficult to solve.

18One perceived weakness of spatial econometric models is that results are sensitive to the somewhat
arbitrary choice of the spatial weights matrix W . LeSage and Pace (2014) call this “the biggest myth in
spatial econometrics” as WaX are typically highly correlated with WbX.
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than what is typically the case. This effect is allowed for byWMAδ. If δ < 0 then spillover

effects from mining are smaller than the average. Alternatively, if δ=0 then mining is like

any other economic activity.

The model’s autoregressive element ρWLD means that spillovers transmit through

the whole system of spatially dependent districts, as neighboring districts have neigh-

bors that in turn have neighbors that have neighbors and so on. Besides, there are also

feedback effects in that impacts through neighboring districts pass back to the mining

district (the mining district is the neighbor’s neighbor). This makes it difficult to see the

size of the effects from ρ, δ and γ (unless the former two are both zeros which imply that

there are no spillover or feedback effects from mining). We therefore report the average

effect to the mining districts (direct effect) and average spillover effect to the neighbors

(indirect effect) separately.

Among the class of models in spatial econometrics LeSage and Pace (2009) proposed

the SDM as the model of departure.19 It includes spatially lagged explanatory variables.

Omitting them if relevant brings in the issue of endogeneity. In contrast, ignoring spatial

dependence in the error term will result in a loss of efficiency but leave the coefficients

unbiased. The SDM can then be simplified to a Spatial Autoregressive Model (SAR) if

θ = δ = 0 and to a Spatial Error Model (SEM) if θ = −ρβ and δ = −ργ .20

We focus on the extensive margin. We use two measures of mining based on i)

mineral production and ii) mineral discovery. For the former we use a dummy variable

if the district has a producing mine. Mineral discoveries are more complex as the effect

unfolds over time. For the sake of simplicity, we use three dummies equal to 1 if the

district had its first mineral discovery in the last 5, 6-9, and more than 10 years ago.

Because we use district fixed effects, identification comes from districts that change their

status from non-mining to mining within the 1992-2012 period.

Table 9 presents the results. Columns 1 and 3, Panel A present the OLS estimates

that serve as a benchmark. Mineral production is associated with a significant increase

in lights by 55%. The pattern for mineral discoveries confirms the one previously found,

whereby lights do not change much during the first 5 years after a discovery, start to

expand thereafter, and reach 59% after more than 10 years. Columns 2 and 4 show the

SDM estimates. The autoregressive coefficient ρ is highly significant and indicating a

19Elhorst (2010) instead proposed a slightly different approach. In his view, the Spatial Durbin Model
should be estimated if the OLS model is rejected in favor of the Spatial Autoregressive Model and/or the
Spatial Error Model. We calculated Moran’s I for the residuals in estimations in Table 2 and 4 and found a
significant positive spatial autocorrelation of the residuals. In line with Elhorst (2010) this is sufficient to
motivate the Spatial Durbin Model.

20Hence, if the true model is an SEM, the SDM will produce correct standard errors (Elhorst, 2010).
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strong positive correlation in lights across space. The spatial lags of mineral activities,

in contrast, are negative indicating that lights in the mining district’s neighbors do in-

deed expand by less than one would expect from spatial correlation patterns generally

observed in lights. However, none of the spatial lagged explanatory variables are sta-

tistically significant. Likelihood ratio tests fail to unambiguously favour SAR over SEM,

which indicates that the SDM is more appropriate here being the more general form of

the two. Panel B of Table 6 shows the implied direct and indirect effects. Spatial spillover

effects are negligible with respect to mineral production. Discovery of mineral resources,

in contrast, reduce lights in neighboring districts rendering the total effect small and non-

significant well until 10 years after a discovery, when direct and indirect effects increase

and become positive. Overall, we conclude that there is little evidence of large and sig-

nificant spatial spillovers from mining. Results from the OLS estimator are qualitatively

the same.

An alternative way to explore general equilibrium effects is to redefine the unit of

observation, ideally so that any spill-over effects are confined to within those redefined

units. We therefore study regions (1st level administrative units), which are one aggregate

higher than districts (2nd level administrative unit). The average region in our sample

comprises seven districts and 46,120 square kilometers (the median size is 17,878 square

kilometers). Furthermore, when using regions the average Euclidean distance from an

active mine to any point on the respective administrative border increases from 62 km

(sd: 57) to 206 km (sd: 105).21 Since mines are more centrally located within a region,

the spill-overs to neighboring regions should be less.

Our testing strategy is as follows. First, we aggregate districts to regions and re-

estimate specification (1) using regions as units of observation. We expect the coefficient

to be positive but smaller than estimates using districts as unit of observation. Second, we

aggregate night-lights in non-mining districts to regions but exclude the mining districts

from the aggregation. Note that while aggregating mining activity from districts to re-

gions we include both mining as well as non-mining districts. We then re-estimate specifi-

cation (1). Note that we are regressing mining activities in a region on night-lights of non-

mining districts within that region. The effect will necessarily be smaller than in strategy

one, because we are excluding the mining districts for which we found positive effects. A

positive/negative coefficient in this specification would point to positive/negative spill-

overs to non-mining districts within the mining regions. We also distinguish between

21For this exercise, we created a node every 5 km and 50 km along the district and region border respec-
tively. Then, after calculating the distance between every mine location and every node on the border we
calculated the mean.
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intensive and extensive margins as we did in Table 2.

Table 10 presents the results. Column 1-4 study the intensive margin. Column 1

estimates the effect of mineral production values on night-lights within a region. The

effect is positive but small. Column 3 focuses on mineral production quantity keeping

the commodity prices at 1992 levels. We find a significant positive effect at the regional

level. When we use the sample of regions that only aggregates from non-mining districts

(column 2 and 4), the coefficients are smaller and non-significant, pointing to limited

spill-over effects to non-mineral producing district of a mining region. Column 5-8 study

the extensive margin. Column 5 shows the effect of a region starting mineral production.

The effect is positive and significant. Column 7 shows the effect of discoveries. We obtain

a similar pattern as at district level, whereas night-lights tend to increase after discovery,

but reach significant levels only after more than 10 years. Column 6 and 8 exclude mining

districts from the region. We obtain positive but relatively small and non-significant

coefficients indicating positive but limited spill-overs to non-mining districts of the same

region. Overall, analysing regions confirms the results from the SDM model: Regions

benefit from mineral production and discoveries, mostly at the extensive margin, but

the effects are largely limited to within the districts in which in the mineral deposits are

located.

Spatial regression techniques and aggregation may be unable to model more com-

plex, non-spatial patterns of spillovers. Gollin et al. (2016), for example, hypothesized

that rents from minerals may be consumed in cities causing urbanization without indus-

trialization. Note that with night-lights data we are unable to distinguish between con-

sumption and investment. However, we could definitely examine the link between min-

ing and night-lights in capital cities. We consider specification (1) and replace mineral

production with an interaction term between a capital city dummy variable and mineral

exports value (as well as an alternative mineral rents as a percentage).22 If the estimated

coefficient on this variable is positive and statistically significant then we can conclude

that indeed the capital cities in mining countries are growing faster with mining wind-

falls. However, we find them to be statistically insignificant indicating very little non-

spatial spillover. We obtain the same result when we study the two brightest lit cities as

of 1992 instead of the capital city. These results are reported in Table 11.

22At this point, we avoid distinguishing between intensive and extensive margin. In 1992 all sub-Saharan
African countries export some (even if tiny) quantity of mineral resources, hence we lack variation.

19



5 Mine Closure and Development

So far we found that mining triggers an increase in economic activity. However, a defining

property of mineral resources is that they are exhaustible. The development trajectory of

a mining district after mining comes to an end is therefore an important question. There

are good reasons to expect hysteresis.23 In our context this means that mining caused a

new equilibrium, but removing mining will not restore the old equilibrium. The form is

highly debated. On the one hand, mining could trigger economies of agglomeration via

a large positive shock to infrastructure, migration flows and urbanization. It is possible

that the remnants of agglomeration would remain after mine closure (Jedwab et al., 2016;

Jedwab and Moradi, 2016; Aragón and Rud, 2016; Fafchamps et al., 2015). On the other

hand, it is entirely possible that mining creates little if any economic activity beyond its

lifetime, rather leaving behind environmental damage making the area worse off than

before mining (Aragón and Rud, 2016).

We are able to shed light on the form of hysteresis. For this purpose we rely on

the MinEx database, which reports production start and closure dates of the mines that

worked the discoveries post-1950. In line with basic microeconomic theory we note that

shutdowns can be temporary. Curiously, this distinction has not been made in the litera-

ture. According to MinEx, 28 mines of the 122 mines closed, 8 re-opened, mostly in the

2000s (when commodity prices increased). We use the MinEx dataset here as it is the only

source that records mining shutdown date. In contrast, the IntierraRMG dataset does not

state the date of closure and hence not suitable for our analysis here.

Our analysis is at district level and we focus on the extensive margin. We construct

three variables that we add to specification (1). First, a dummy variable equal to 1, once

a district had at least one producing mine. Second, a dummy variable equal to 1, if all

mines in a district shut down. Third, a dummy variable equal to 1 if all mines in a district

shut down and none reopens by 2012.

Identification comes from districts that change status during the 1992-2012 period.

Unfortunately, the number of such districts is limited. Only 12 districts in the sample

experienced an end to all mining activities in at least one year; in only 4 districts min-

ing activities did not resume by 2012. Moreover, there may be endogeneity concerns.

We therefore researched the backgrounds of the four districts more closely. Most of the

closures seem to be driven by exogenous factors. Firstly, Poura district in Burkina Faso,

23Hysteresis is a property of ferromagnetic materials. After a material is magnetized and subsequently
the magnetizing field is removed, the magnetized material will not revert back to its original state. It
remembers its history which is known as hysteresis.
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1999: “The mine closed due to low gold price” and the Burkinabe government is aiming

to bring production back (Africa Mining Intelligence, 2011). Secondly, Maféré district in

Côte d’Ivoire, 1998 the mining company (SOMIAF) terminated its operation on the prop-

erty. There was a feasibility study in 2013, which suggests that mining may recur (Taurus

Gold Limited, 2012). Thirdly, Groblersdal, South Africa, 2011 where “at the existing low

rand PGM (platinum group metals) prices and the rate of mine cost inflation in the coun-

try, the mine cannot operate economically.” (?). Finally, Bonthe district in Sierre Leone

1995 stopped production because the mine suffered damage and destruction when it was

attacked by rebels during the civil war. The last case is indeed problematic.

Table 12 reports the results. In column (1), we note the large positive effect for dis-

tricts that change status to mining. Night-lights increase by about 72 percentage points.

Shutdowns have a large negative effect of 49 percentage points. In column (2) we dis-

tinguish between temporary shutdowns and what may be considered permanent in that

mining activities have not resumed by 2012. Temporary shutdowns are associated with

a decrease in night-lights of 22 percentage points, whereas districts that failed to recover

mining by 2012 experienced an additional drop of 84 percentage points. In column (3),

we exclude Bonthe district from the regression which indeed influences the estimates of

the permanent effect. Interestingly, size of the effect of a permanent shutdowns is almost

identical to the effect of a district entering mining. Hence, the results are suggestive that

the activity created by the mine is largely lost once mining disappears.

6 Robustness

We subject our results to a battery of robustness checks. We focus on Tables 2 and 5.

Robustness results are shown in Online Appendix Tables A1-A7 for Table 2 and Tables

A8-A13 for Table 5.

First, our ’intensive margin’ results may be sensitive to how we treat missing values

in mineral production data (see data appendix for details). To check robustness we drop

district-year observations from the estimation of Table 2 if production quantity of a single

commodity produced by a (single) mine in the district is missing. Coefficients increase,

but our results remain qualitatively unchanged (see Table A1).24

Second, recent studies raised concerns regarding night-lights data. Min (2008) and

Cogneau and Dupraz (2014) argue that in sparsely populated areas light intensity is dom-

24On the one hand, the increase in coefficients may be attributed to measurement error and attenuation
bias that we introduce by interpolating production data. On the other hand, relying on exceptionally well-
documented cases may introduce selection bias. After all, detailed reporting may be associated with good
management of a company or governing of a country.
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inated by noise. Min (2008) points to a minimum population threshold above which one

can reliably assume that the lack of visible night-lights indicate lack of electrification and

outdoor lights. We follow Min (2008) and exclude sparsely populated districts with less

than 4 people per square kilometer from the sample. Furthermore, we follow Cogneau

and Dupraz (2014) and drop zero luminosity districts from the sample. Key estimates

reported in Tables 2 and 5 remain unchanged (see Tables A2, A3, A8, and A9).

Third, by using districts as the unit of observation we assign each district the same

weight which might lead to over representation of districts with greater population den-

sity. The concern became self-evident when contrasting Mali with Burkina Faso. While

the two countries have roughly the same population size, the number of districts is 46

and 301 respectively (see Figure 2). One may argue that more consideration should be

given to population size at the district level. We therefore weight districts by their popu-

lation size. We also weight districts by the inverse of the total number of districts in that

country, thereby assigning equal weights to countries. Again, we re-estimate Tables 2 and

5 and the results in fact become stronger (see Tables A4, A5, A10, and A11).

Fourth, we address concerns that second level subnational administrative bound-

aries may be endogenous by construction. Administrative boundary demarcations in a

country are typically determined by geographic, demographic, and political characteris-

tics of the area, which could be determinants of local economic development. To mitigate

this concern, we use 0.5 x 0.5 degree grid cells as units of observation (i.e. around 55 x

55 kilometers at the equator). Several recent studies have implemented similar grid-cell

level approach (see for example Dell et al. (2012); Alesina et al. (2016); Michalopoulos

and Papaioannou (2013)). Our results in Tables 2 and 5 remain unaffected by this change

in the unit of analysis (see Tables A6 and A12).

Finally, the variation in the data could be driven by region level unobservables.

Therefore, we control for region and year fixed effects in the regression instead of district

and year fixed effects. Again our results in Tables 2 and 5 remain unaffected (see Tables

A7 and A13).

7 Concluding Remarks

The paper investigates how mining affects living standards in Sub-Saharan Africa. In

doing so it explores some nuanced question. Are the development effects of a new mine

(extensive margin) any different from a pre-existing mine (intensive margin)? To what

extent can we observe spillovers from mining? The study finds positive effects of mining

at the intensive margin, however large effects are associated with mining at the extensive
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margin. The effect of mining appears to be transitory as it typically disappears when

mining comes to an end. This is consistent with the macro resource curse result. Further-

more, the enclave nature of mining is demonstrated by our data as we hardly observe any

spillover of the positive effects of mining beyond the host district.

How big are the economic significance of these effects? A simple test would be to

tally them with the district level real GDP data. Henderson et al. (2012, Table 3) find that

for low and middle income countries with poor quality national accounts data the elastic-

ity of growth of lights emanating into space with respect to GDP growth at the national

level is close to 0.3. Michalopoulos and Papaioannou (2013) use the Demographic and

Health Survey (DHS) data at the subnational level and estimate the elasticity between

luminosity and composite wealth index to be 0.7. Based on such estimates we could spec-

ulate that a switch from non-mining to mining would increase a district’s GDP by 55 x

0.3=16.5 percent.

Our findings imply that resource depletion in sub-Saharan African countries offer

a temporary opportunity to improve local living standards. Furthermore, the absence

of significant positive spillovers represent additional challenges. These challenges could

potentially be tackled in an environment of relatively high global commodity prices and

new resource discoveries in Africa through pro-active policy on infrastructure improve-

ment, market linkage promotion, and business friendly regulatory and institutional re-

forms. Such policies may potentially trigger agglomeration effects via new cities and new

infrastructure especially at the extensive margin. This is an opportunity not to be missed

by sub-Saharan Africa.
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Appendices

A1. List of Countries in the Sample

Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African Republic,

Chad, Democratic Republic of Congo, Cote d’Ivoire, Equatorial Guinea, Eritrea, Ethiopia,

Gabon, Gambia, Ghana, Guinea, Guinea Bissau, Kenya, Lesotho, Liberia, Madagascar,

Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Republic of Congo,

Rwanda, Senegal, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo,

Uganda, Zambia, Zimbabwe.

A2. Data Appendix

Administrative Units of Sub-Saharan Africa

We use districts as the main units of observation. Districts are second level sub-national

administrative units. We obtained the political boundaries from a shapefile entitled “Sub-

National Administrative and Political Boundaries of Africa (2000)” deposited at FAO

GeoNetwork (FAO GeoNetwork, 2013). The 3,635 districts belong to 521 regions and

42 Sub-Saharan African countries. The average area of a district is 6,585 square kilome-

ters.

Mineral Production, Mineral Discovery and Mining Status

The value of mineral production is calculated as production quantity in metric tons (t)

multiplied by the international price (1992$/t) summed over 21 mineral commodities

(diamond, iron, gold, silver, copper, nickel, aluminum, cobalt, zinc, lead, manganese,

bauxite, tantalum, zircon, tin, chromite, antimony, platinum-group metals (PGE), vana-

dium, vermiculite and graphite). The prices of mineral commodities are sourced from

Minerals UK (British Geological Survey, 2014). The production data for 548 industrial

size mines are from IntierraRMG, now known as SNL (IntierraRMG, 2014). Mines are

matched to the district using their location coordinates from IntierraRMG. Information

for every mine, commodity (particularly for secondary minerals) and year is sometimes

lacking. We dealt with missing production data as follows. We replaced missing values

by linearly interpolating production quantities at the district-commodity level. Any neg-

ative values were set to zero and we entirely dropped commodities if only observed in

a single year. This results in a balanced panel of district production data for the period

1992 - 2012. We complemented IntierraRMG’s information on production start-up year

with our own efforts consulting sources such as the website of the respective company.
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From IntierraRMG we also extracted information on the status of mining (grassroots, ex-

ploration, advanced exploration, pre-feasibility, feasibility, and construction). The first

three stages of mining investment are predominantly exploratory whereas the last three

stages determine commercial viability of a project. The data on discoveries of major or

giant mineral deposits are from (MinEx Consulting, 2014). We have the date of discovery,

location coordinates, and the date of production start-up for 263 mineral discoveries from

1950 to 2012. Finally, we make use of some macro data commonly used in the literature.

Data on mineral exports value as a % of GDP and mineral rents as a % of GDP are drawn

from the Bank (2015) and the Wealth of Nations Database (Hamilton and Clemens, 1999)

respectively.

Night-time Lights

The data on night-time lights 1992 - 2012 come from the Defense Meteorological Satel-

lite Program’s Operational Linescan System (DMSP-OLS) and are provided by National

Oceanic and Atmospheric Administration (2013) at a high resolution of 30-second grids

(equivalent to 1 square kilometer). Satellites captured images of the earth between 20:30

to 22:00 local time. The night-time lights data is the cleaned luminosity after the cloud

coverage, other ephemeral lights, and background noise is excluded. The measure comes

on a scale from 0 to 63 (digital number) where higher values imply higher night-time

light intensities.

Population Statistics

District population was constructed from the Gridded Population of the World, Version

3 (GPWv3) produced by the Centre for International Earth Science Information Network

(CIESIN, 2005). GPWv3 provides population counts at 2.5 arc-minute resolution for

1990, 1995, and 2000 and population projections for 2005, 2010, and 2015. We obtained

the district population for the years {1990, 1995, ..., 2015} by areal weighting and im-

puted values for single years 1992-2012 by linear interpolation.

Public Infrastructure

Shapefiles of the road network and electricity grids in 2000 come from the African De-

velopment Bank (2013), and the railway shapefiles are from DIVA-GIS (Hijmans et al.,

2012). Using GIS we calculated the total length (km) of paved roads, railways and elec-

tric grid in each district, expressing it then as densities: i) road density (i.e. paved road

length per square kilometer), ii) railway density (i.e. railway length per square kilometer)

and iii) electric grid density (i.e. electric transmission cable length per square kilometer).

25



Altitude, Ruggedness, Fertility, Coastal Proximity and Land Area

Topographical data of the NASA Shuttle Radar Topographic Mission (SRTM) 90m Digital

Elevation Database was retrieved from the Consortium for Spatial Information (CGIAR-

CSI) of the Consultative Group for International Agricultural Research (CGIAR)(Jarvis

et al., 2014). We calculated the altitude as the mean elevation above sea level of a district

(in 100s of meters). Ruggedness measures a district’s average standard deviation of ele-

vation (in 100s of meters). Using data from FAO/UNESCO Digital Soil Map of the World

(FAO, 2014), we constructed soil fertility as the percentage of a district’s land surface area

with good fertile soil for agricultural crops. Using GIS we calculated the shortest distance

from a district’s centroids to the coast (in kilometers). We measure the area of the dis-

trict as the land surface area (in square kilometer) using the shapefile of administrative

boundaries.

Rainfall, Tropical Climate, Arid Climate and Temperate Climate

Average annual rainfall (in mm) in each district for the period 1992-2012 is constructed

using rainfall data from the TAMSAT Research Group (TAMSAT, 2014). TAMSAT rainfall

estimations are locally calibrated using historic rain gage records (ground-based obser-

vations) in real-time to provide an internally consistent rainfall dataset. Using data from

Kottek et al. (2006) we calculated the percentage of the district’s land surface area that

are classified as tropical climate, arid climate and temperate climate.

Political Economy

Using GIS we created a capital dummy variable equal to one if a district contains the

capital city, or if the district itself is the capital city. We also use GIS to calculate the

distance between a district’s centroids and the capital city (in kilometers). Furthermore,

we measure ethnic fractionalisation calculating the Herfindahl-Hirschman index from

the ethnic groups mapped by Murdock (1959).
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Bigsten, Arne and Måns Söderbom (2006), “What Have We Learned from a Decade of

Manufacturing Enterprise Surveys in Africa?” The World Bank Research Observer, 21,

241–265.

British Geological Survey (2014), “British Geological Survey: African Mineral Produc-

tion.” URL https://www.bgs.ac.uk/mineralsuk/.

Caselli, Francesco and Guy Michaels (2013), “Do Oil Windfalls Improve Living Stan-

dards? Evidence from Brazil.” American Economic Journal: Applied Economics, 5, 208–

238.

CIESIN (2005), “Center for International Earth Science Information Network - CIESIN

- Columbia University, United Nations Food and Agriculture Programme - FAO, and

Centro Internacional de Agricultura Tropical - CIAT (2005) - Gridded Population of

the World, Version 3 (GPWv3): Population Count Grid.” URL http://dx.doi.org/

10.7927/H4639MPP.

Cogneau, Denis and Yannick Dupraz (2014), “Questionable Inference on the Power of

Pre-Colonial Institutions in Africa.” Paris School of Economics Working Paper, 25.

Collier, Paul (2000), “Ethnicity, Politics and Economic Performance.” Economics and Poli-
tics, 12, 225–245.

Collier, Paul and Anke Hoeffler (2009), “Testing the Neocon Agenda: Democracy in

Resource-Rich Societies.” European Economic Review, 53, 293–308.

Corden, W. Max and J. Peter Neary (1982), “Booming Sector and De-Industrialisation in

a Small Open Economy.” The Economic Journal, 92, 825–848.

Cotet, Anca and Kevin Tsui (2013), “Oil and Conflict: What Does the Cross Country

Evidence Really Show?” American Economic Journal: Macroeconomics, 5, 49–80.

Deaton, Angus (1999), “Commodity Prices and Growth in Africa.” Journal of Economic
Perspectives, 13, 23–40.

28

https://www.bgs.ac.uk/mineralsuk/
http://dx.doi.org/10.7927/H4639MPP
http://dx.doi.org/10.7927/H4639MPP


Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken (2012), “Temperature Shocks

and Economic Growth: Evidence from the Last Half Century.” American Economic Jour-
nal: Macroeconomics, 4, 66–95.

Elhorst, J. Paul (2010), “Applied Spatial Econometrics: Raising the Bar.” Spatial Economic
Analysis, 5, 9–28.

Fafchamps, Marcel, Michael Koelle, and Forhad Shilpi (2015), “Gold Mining and Proto-

Urbanization: Recent Evidence from Ghana.” World Bank Policy Research Working Pa-
pers.

FAO (2014), “FAO/UNESCO Soil Map of the World.” URL http://

www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/

faounesco-soil-map-of-the-world/en/.

FAO GeoNetwork (2013), “Sub-National Administrative and Political Boundaries of

Africa (2000).” URL www.fao.org/geonetwork/.

Gollin, Douglas, Remi Jedwab, and Dietrich Vollrath (2016), “Urbanization With and

Without Industrialization.” Journal of Economic Growth, 21, 35–70.

Gylfason, Thorvaldur (2001), “Natural Resources, Education and Economic Develop-

ment.” European Economic Review, 45, 847–859.

Hamilton, Kirk and Michael Clemens (1999), “Genuine savings rates in developing coun-

tries.” World Bank Economic Review, 13, 333–356.

Henderson, Vernon, Adam Storeygard, and David N. Weil (2012), “Measuring Economic

Growth from Outer Space.” The American Economic Review, 102, 994–1028.

Hijmans, Robert J., Luigi Guarino, and Prem Mathur (2012), “DIVA-GIS.” URL http:

//www.diva-gis.org/documentation.

Hodler, Roland (2006), “The Curse of Natural Resources in Fractionalized Countries.”

European Economic Review, 50, 1367–1386.

Hodler, Roland and Paul A Raschky (2014), “Regional Favoritism.” The Quarterly Journal
of Economics, 129, 995–1033.

Imbens, Guido W. and Jeffrey Wooldridge (2009), “Recent Developments in the Econo-

metrics of Program Evaluation.” Journal of Economic Literature, 47, 5–86.

29

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
www.fao.org/geonetwork/
http://www.diva-gis.org/documentation
http://www.diva-gis.org/documentation


IntierraRMG (2014), “SNL Metal and Mining.” URL http://www.snl.com/Sectors/

metalsmining/Default.aspx.

Isham, Jonathan, Michael Woolcock, Lant Pritchett, and Gwen Busby (2005), “The Va-

rieties of Resource Experience: Natural Resource Export Structures and the Political

Economy of Economic Growth.” World Bank Economic Review, 19, 141–174.

Jarvis, Andy, Hannes Isaak Reuter, Andy Nelson, and E. Guevara (2014), “Hole-filled

NASA Shuttle Radar Topographic Mission (SRTM) for the globe Version 4, available

from the CGIAR-CSI SRTM 90m Database.” URL http://srtm.csi.cgiar.org.

Jedwab, Remi, Edward Kerby, and Alexander Moradi (2016), “History, Path Dependence

and Development: Evidence from Colonial Railroads, Settlers and Cities in Kenya.” The
Economic Journal.

Jedwab, Remi and Alexander Moradi (2016), “The Permanent Effects of Transportation

Revolutions in Poor Countries: Evidence from Africa.” Review of Economics and Statis-
tics, 98, 268–284.

Kotsadam, Andreas and Anja Tolonen (2016), “African mining, gender, and local employ-

ment.” World Development, 83, 325–339.

Kottek, Markus, Jurgen Grieser, Christoph Beck, Bruno Rudolf, and Franz Rubel (2006),
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Figure 1: Mining Discovery, Mining Production and Nightlights

Notes: The upper panel shows Zabre District in Burkina Faso starting gold production in 2008. The lower
panel shows Ihosy District in Madagascar. After the discovery of Sapphire deposits at Ilakaka - a village
with about 40 households - in 1998, the place saw an influx of migrants and turned into a major trading
centre for sapphires and a town with an estimated population of now larger than 30,000. Until 1998
there were no nightlights visible in Ilakaka. After the discovery, the number of pixels with visible lights
increased. Ihosy town, in contrast, has not experienced such growth; lights got smaller and weaker. Overall,
however, the aggregate lit pixels have increased in Ihosy District. The lower panel is a replication of Figure
5 in Henderson et al. (2012).
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Figure 2: District Level Boundary Map of Sub-Saharan Africa

Notes: This map shows the second level administrative units (’districts’) for the year 2000 that we use in
our analysis. The boundaries in GIS were obtained from FAO GeoNetwork (2013). We exclude small island
countries (Saint Helena, Seychelles, Sao Tome and Principe, Reunion, Mayotte, Mauritius, Cape Verde and
Comoros) and Djibouti. Our sample consists of 3,635 districts from 42 Sub-Saharan African countries.

Figure 3: Mining Industry Locations

Notes: The map shows the location of active, industrial size mines in sub-Saharan Africa. These mines are
owned or operated by either large multinationals or state owned companies. We exclude small-scale mines
and informal or illegal mines. Data is from IntierraRMG.

34



Figure 4: Locations of Mineral Deposit Discoveries

Notes: The map shows the location of giant and major mineral deposit discoveries in Sub-Saharan Africa
over the period 1950-2012. Data from MinEx Consulting.

Figure 5: Trends in Lights Density before and after Mineral Production Treatment

Notes: The graph shows the evolution of nightlights for three categories of districts: i) districts that started
mineral production after 2002 (treatment), ii) districts that never had any mining activity (control group
1) and iii) districts that are yet to be mined but with substantial mineral deposits identified in feasibility
studies (control group 2). Data is from IntierraRMG.
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Figure 6: Effect of Mineral Production on Lights Density

Notes: The graph shows the evolution of nightlights in mining districts in the run-up to production and
the years thereafter. Production starts at time t=0. Data is from IntierraRMG.

Figure 7: Kaplan-Meier Estimates of Mineral Discoveries Entering Production

Notes: The graph shows Kaplan-Meier failure estimates for mineral discoveries 1950-2013, whereby min-
eral deposits become “at risk” when discovered and “fail” when entering production. Discoveries with a re-
ported status of “Undeveloped” or “Feasibility” were coded as not having started production. We excluded
mineral discoveries (N=12), for which the start-up year was missing but current status was reported as
“unknown”, “operating” and “closed”. N(major discoveries/giant discoveries at risk)=(156/88). Data from
MinEx Consulting.
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Table 1: Summary Statistics

Variable Obs Mean Std. Dev. Min Max
Main Variables

Ln(0.01+Lights density per sq. km) 76335 -2.36 2.38 -4.61 4.51
Ln(Mineral production) 1802 16.86 3.47 -0.23 27.63
Ln(Min. prod. 1992 commodity prices) 1802 16.96 3.06 1.66 27.57
Mineral production (1=yes) 76335 0.04 0.20 0 1
Mineral discovery 76335 0.00 0.03 0 1
Mineral discovery (permanent switch) 76335 0.01 0.10 0 1

Controls: Population and Geography Variables
Ln(Population density per sq. km) 76335 3.98 1.61 0.02 10.04
Ln(Altitude in m) 76335 5.88 1.38 0.62 7.91
Ln(Ruggedness) 76335 4.05 1.14 0 6.93
Share of district with fertile soil 76335 18.60 29.45 0 100
Ln(Distance to the coast in km) 76335 5.55 1.39 -4.23 7.45
Ln(Land surface area in sq. km) 76335 7.41 1.72 -0.73 12.79

Controls: Climate Variables
Ln(Annual average rainfall in mm) 76335 5.12 0.76 0.13 6.38
Share of district with tropical climate 76335 60.19 47.12 0 100
Share of district with temperate climate 76335 14.32 32.64 0 100
Share of district with dry/arid climate 76335 25.28 42.14 0 100

Controls: Urbanization and Political Economy Variables
Capital city (1=yes) 76335 0.01 0.11 0 1
Ln (Distance to the capital city in km) 76335 5.47 0.97 0.66 7.54
Ethnic Fractionalization 76335 0.21 0.24 0 0.93

Controls: Infrastructure Variables
Ln(Paved road density per sq. km (2000)) 76335 0.02 0.04 0 0.52
Ln(Railway density per sq. km (2000)) 76335 1.01 1.72 0 6.79
Ln(Electric-grid density per sq. km (2000) 76335 0.07 0.17 0 2.25

Notes: This table reports descriptive statistics. All variables are measured at the district level. Discovery
is a dummy variable which takes the value 1 for a district-year if there is a giant or major discovery for
that year and 0 otherwise. The variable mineral discovery (permanent switch) is a dummy variable taking
the value 1 for the discovery year and every year thereafter. Summary statistics for mineral production is
limited to districts with mineral production, hence the smaller number of observations. Log transformation
for variable x is conducted using the formula ln(1 + x) if x could potentially be equal to 0.

37



Table 2: Associations between Mineral Production and Night-Lights at District Level

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.024* -0.061
(0.014) (0.047)

Ln(Mineral production in 0.038** 0.102*
1992 commodity prices) (0.018) (0.057)

Mineral production (1=yes) 0.554***
(0.117)

Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,802 1,802 1,802 76,335
N(Districts/Regions/Countries) 137/80/28 137/80/28 137/80/28 3,635/519/42
R-squared adj. 0.979 0.979 0.979 0.945

Notes: This table shows the association between night-lights and various measures of mining activity in
a panel of district-year observations for the period 1992-2012. Dependent variable is Ln(0.01+Nighttime
Lights Density per sq. km). Column (1) expresses the mineral production value in 1992 constant USD.
Column 2 expresses the mineral production value in 1992 constant commodity prices. Column 3 includes
both those indicators. Column 4 uses a dummy variable equal to one if the district had a producing mine
thereby using the full sample. For a detailed variable description, see Data Appendix. Robust standard
errors clustered by region are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%,
and 10% level, respectively.
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Table 4: Comparison of Treated and Control Districts (Mineral Production Treatment)

Normalized Difference
Treated Treated-Control 1 Treated-Control 2

Never mined Feasibility
(1) (2) (3)

Number of Districts 53 3284 156
Panel A: Time-Invariant Cross-Sectional Variables

Ln(Altitude in m) 6.18 0.14* -0.00
Ln(Ruggedness) 4.31 0.14* -0.04
Share of district with fertile soil 16.09 -0.04 -0.09
Ln(Distance to the Coast in km) 5.76 0.09 0.05
Ln(Land surface area in sq. km) 8.40 0.36*** -0.03
Ln(Average annual rainfall in mm) 4.73 -0.15** 0.03
Share of district with tropical climate 50.88 -0.11* -0.09
Share of district with dry/arid climate 27.17 0.03 0.00
Share of district with temperate climate 21.94 0.12** 0.11
Capital city (1=yes) 0 -0.11 -0.08
Ln (Distance to the capital city in km) 5.56 0.05 -0.03
Ethnic Fractionalization 0.31 0.24*** 0.02
Ln(Paved road density per sq. km in 2000) 0.02 -0.05 0.10
Ln(Railway density per sq. km in 2000) 1.66 0.21*** 0.03
Ln(Electric-grid density per sq. km in 2000) 0.06 -0.05 0.16**

Panel B: Trend Comparison
Ln (0.01+Nighttime Lights Density)
Pre-treatment growth 1992-2002 0.60 -0.00 0.00
Post-treatment growth 2003-2012 1.33 0.41*** 0.53***
Ln (0.01+Nighttime Lights Per Capita)
Pre-treatment growth 1992-2002 0.40 0.01 0.02
Post-treatment growth 2003-2012 1.17 0.44*** 0.55***

Notes: This table shows the difference in observables and outcomes between treated and control districts.
Treated districts started mineral production for the first time between 2003 and 2012. The control groups
are defined as i) districts that never had any mining activity (control group 1) and ii) districts yet without
mining but with mineral deposits, which potential is examined in a feasibility study (control group 2).
In column (1), coefficients represent the mean value of each variable for the treatment group. In column
(2) and (3), we present the normalised mean difference relative to the control group as recommended in
Imbens and Wooldridge (2009). Panel A presents the comparison of time invariant variables. Panel B
presents decadal growth rates before treatment (1992-2002) and after treatment (2003-2012). ***, ** and *
indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table 5: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 -0.029 -0.028 -0.032 -0.024

(0.061) (0.063) (0.098) (0.081)
j = 1 0.023 0.024 0.100 -0.005

(0.073) (0.075) (0.111) (0.091)
j = 2 -0.011 -0.008 0.075 -0.043

(0.079) (0.081) (0.106) (0.098)
j = 3 0.019 0.006 -0.015 0.039

(0.086) (0.087) (0.131) (0.094)
j = 4 0.071 0.068 0.085 0.070

(0.100) (0.104) (0.167) (0.111)
j = 5 0.126 0.114 0.146 0.122

(0.104) (0.109) (0.174) (0.114)
j = 6 0.194* 0.190* 0.314 0.134

(0.112) (0.118) (0.220) (0.118)
j = 7 0.242** 0.218* 0.342 0.190

(0.121) (0.126) (0.235) (0.123)
j = 8 0.387*** 0.391*** 0.484** 0.331**

(0.137) (0.147) (0.235) (0.161)
j = 9 0.401*** 0.402*** 0.477** 0.355**

(0.149) (0.155) (0.247) (0.171)
j = 10 0.438*** 0.431*** 0.538** 0.373**

(0.149) (0.156) (0.253) (0.166)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 74,234 74,178 73,150 73,828
N(Discoveries) [66, 79] [57, 77] [21, 28] [38, 55]
N(Districts/Regions/Countries)3,560/516/42 3,557/516/42 3,493/515/42 3,530/515/42
R-squared adj. 0.944 0.944 0.944 0.944

Notes: This table reports the effect of mineral resource discoveries on night-lights in a panel of district-year
observations. Districts with pre-existing mining activities were dropped from the regression. In column
(1), the variable of interest MDdt−j is a dummy variable equal to 1 if a giant or major mineral deposit was
discovered j years ago, 0 if no discovery has been made and missing for every post-discovery year j > 10.
In column (2), the dummies are set to missing the year a second discovery was made in the same district.
In column (3) and (4), the dummy refers to giant and major deposit discoveries respectively. Because of
the 10-year lag, the discoveries and numbers referred to by each dummy variable may vary. All regressions
include year and district fixed effects. We also control for population density and annual average rainfall.
Robust standard errors in parentheses are clustered by region. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% level, respectively.
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Table 6: Placebo Test for Pre-discovery Trends in Night-Lights

First Discoveries First Discoveries
2002-2012 1997-2007

MDdt−j : Mineral discovery made in year t − j (1) (2)

P
re

-D
is

co
ve

ry

j = −10 0.030
(0.101)

j = −9 0.063
(0.083)

j = −8 -0.059
(0.110)

j = −7 -0.047
(0.088)

j = −6 -0.016
(0.090)

j = −5 -0.064 -0.037
(0.092) (0.179)

j = −4 0.020 0.027
(0.055) (0.214)

j = −3 0.022 0.037
(0.061) (0.199)

j = −2 -0.033 0.042
(0.043) (0.202)

j = −1 -0.048 -0.004
(0.046) (0.201)

Po
st

-D
is

co
ve

ry

j = 0 0.016
(0.215)

j = 1 0.048
(0.217)

j = 2 0.037
(0.220)

j = 3 0.033
(0.220)

j = 4 0.050
(0.220)

j = 5 0.072
(0.213)

Population density & Rainfall Yes Yes
Year Fixed Effects Yes Yes
District Fixed Effects Yes Yes
F-test of joint significance of pre-discovery dummies (p-val) 0.15 0.59
N 73,106 73,253
N Discoveries 34 42
N(Districts/Regions/Countries) 3,497/514/42 3,505/515/42
R-squared adj. 0.944 0.944

Notes: This table tests for pre-treatment effects in mineral discoveries (shown in Table 5). Because in-
formation on discoveries post-2012 is unavailable, we apply the following symmetric pre-/post discovery
windows. Column (1) shows 10-year pre-discovery trends for discoveries that were made between 2002
and 2012. Column (2) shows trends in night-lights 5-years pre-/ post-discovery for discoveries that were
made between 1997 and 2007. All regressions include year and district fixed effects. Robust standard er-
rors in parentheses are clustered by region. ***, **, and * indicate statistical significance at the 1%, 5%, and
10% level, respectively.
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Table 7: Associations between Mineral Production and Night-Lights at District Level
(Dropping light pixels emanating from the industry)

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.022 -0.075
(0.014) (0.048)

Ln(Mineral production in 0.037** 0.115*
1992 commodity prices) (0.018) (0.058)
Mineral production (1=yes) 0.466***

(0.106)
Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,802 1,802 1,802 76,335
N(Districts/Regions/Countries) 137/80/28 137/80/28 137/80/28 3,635/519/42
R-squared adj. 0.979 0.979 0.979 0.945

Notes: This table is a re-estimation of Table 2. It shows associations between mining activities and night-
lights in a panel of district-year observations for the period 1992-2012. In this table, the dependent variable
(i.e. sum of nighttime lights density) excludes lights emanating from the mining industries (i.e deleting
pixel values of the light data around 2km radius of mining industries). Column (1) expresses the mineral
production value in 1992 constant USD. Column (2) expresses the mineral production value in 1992 con-
stant commodity prices. Column (3) includes both those indicators. Column (4) uses a dummy variable
equal to one if the district had a producing mine thereby using the full sample. Robust standard errors
clustered by region are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
level, respectively.
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Table 8: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts (Delet-
ing lights emanating from the industry)

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 0.031 -0.003 0.032 -0.008

(0.109) (0.067) (0.111) (0.084)
j = 1 0.102 0.041 0.133 0.013

(0.121) (0.078) (0.119) (0.095)
j = 2 0.081 0.007 0.114 -0.030

(0.117) (0.082) (0.105) (0.102)
j = 3 0.111 0.022 0.088 0.022

(0.131) (0.091) (0.132) (0.099)
j = 4 0.206 0.079 0.146 0.042

(0.138) (0.105) (0.170) (0.106)
j = 5 0.249 0.108 0.197 0.102

(0.160) (0.112) (0.193) (0.116)
j = 6 0.318* 0.222* 0.384 0.145

(0.164) (0.121) (0.240) (0.118)
j = 7 0.288* 0.223* 0.418 0.136

(0.173) (0.132) (0.262) (0.117)
j = 8 0.384** 0.386*** 0.519** 0.323**

(0.170) (0.143) (0.253) (0.153)
j = 9 0.434** 0.396*** 0.529* 0.337**

(0.188) (0.153) (0.269) (0.159)
j = 10 0.418** 0.409*** 0.556** 0.337**

(0.191) (0.155) (0.272) (0.159)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 73,428 74,178 73,150 73,828
N(Districts/Regions/Countries)3,560/516/42 3,557/516/42 3,493/515/42 3,530/515/42
R-squared adj. 0.943 0.944 0.944 0.943

Notes: This table is a re-estimation of Table 5. It reports the effect of mineral resource discoveries on night-
lights in a panel of district-year observations. In this table, the dependent variable (i.e. sum of nighttime
lights density) excludes lights emanating from the mining industries (i.e deleting pixel values of the light
data around 2km radius of mining industries). In column (1), the variable of interest MDdt−j is a dummy
variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if no discovery has been
made and missing for every post-discovery year j > 10. In column (2), the dummies are set to missing the
year a second discovery was made in the same district. In column (3) and (4), the dummy refers to giant and
major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers referred to
by each dummy variable may vary. All regressions include year and district fixed effects. We also control
for population density and annual average rainfall. Robust standard errors in parentheses are clustered by
region. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

44



Table 9: Spatial Spillovers from Mining

Start-up of Mineral Production First Mineral Discovery
OLS SDM OLS SDM
(1) (2) (3) (4)

Panel A: Estimated Coefficients

District has a producing mine
0.554*** 0.559***
(0.117) (0.115)

W(District has a producing mine)
-0.153
(0.182)

Discovery in the past 5 years
0.009 0.011

(0.072) (0.067)

Discovery in the past 6-10 years
0.257** 0.247**
(0.113) (0.108)

Discovery more than 10 years ago
0.593*** 0.572***
(0.150) (0.145)

W(Discovery in the past 5 years)
-0.121
(0.176)

W(Discovery in the past 6-10 years)
-0.128
(0.211)

W(Discovery more than 10 years ago) 0.056
(0.286)

Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes

ρ
0.232*** 0.232***
(0.016) (0.016)

δ = 0 (χ2-Test, p-val) 0.66
θ = δ = 0 (χ2-Test, p-val) 0.38 0.45
θ = −ρβ and δ = −ργ (χ2-Test, p-val) 0.19 0.43
N 76,335 76,335 76,335 76,335
N(Districts/Regions/Countries) 3,635/519/42 3,635/519/42 3,635/519/42 3,635/519/42
R-squared 0.947 0.173 0.947 0.145
Panel B: Direct & Indirect Effects of Mining from SDM

Direct Indirect Direct Indirect

District has a producing mine
0.573*** 0.004
(0.115) (0.264)

Discovery in the past 5 years
0.013 -0.172

(0.064) (0.276)

Discovery in the past 6-10 years
0.230** -0.139
(0.104) (0.242)

Discovery more than 10 years ago 0.518*** 0.172
(0.129) (0.296)

Notes: This table reports spatial spillover effects from mining on neighbouring districts in a panel of
district-year observations. The dependent variable is the natural log of night-lights density plus 0.01. Col-
umn (1) and (3) show OLS baselines estimates, whereas (2) and (4) show estimates of a Spatial Durbin
Model (SDM). The direct effect refers to the effect in the mining district, whereas the indirect effect refers
to the average spillover effect into neighbouring districts. The total effect of mining is the sum of the two
effects. Estimates are based on a spatial weights matrix W that assigns a 1 to districts that share a common
border. Robust standard errors in parentheses are clustered by region. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% level, respectively.
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Table 11: Association between mineral production and nightlights in a country’s major
cities

Capital city Capital city Two brightest Two brightest
cities in 1992 cities in 1992

(1) (2) (3) (4)
Capital City x Ln(Mineral -0.007
exports value) (0.011)

Capital city x (Mineral -0.010
rents as % of GDP) (0.006)

Country’s two brightest -0.003
cities in 1992 x Ln(Mineral
exports value)

(0.013)

Country’s two brightest -0.008
cities in 1992 x (Mineral
rents as % of GDP)

(0.009)

Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 69,569 74,781 69,569 74,781
N(Regions/Districts) 494/ 3,524 503/ 3,561 494/ 3,524 503/ 3,561
Adjusted R-squared 0.949 0.947 0.949 0.947

Notes: This table shows the correlation between a country’s mining activities and nightlights in a country’s
major cities using a panel of district-year observations. Column (1) reports the interaction effect between
being the capital city and the natural log of total value of mineral exports. Instead of export values, column
(2) uses mineral rents as a percentage of GDP. Column (3) and (4) examine the patterns in the two highest lit
districts as of 1992 instead of the capital city. Estimator is OLS. All regressions include population density,
rainfall and year and district fixed effects. Robust standard errors clustered by region are in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table 12: Mine Closure and Development

(1) (2) (3)
District has been mined 0.722*** 0.725*** 0.722***

(0.162) (0.161) (0.162)
Shutdown -0.491* -0.224 -0.224

(0.264) (0.137) (0.137)
Shutdown and not reopened by 2012 -0.837 -0.531

(0.700) (0.787)
Population density & Rainfall Yes Yes Yes
Year Fixed Effects Yes Yes Yes
District Fixed Effects Yes Yes Yes
N 76,335 76,335 76,314
N(Districts/Regions/Countries) 3,635/519/42 3,635/519/42 3,634/519/42
R-squared adj. 0.947 0.947 0.947

Notes: This table shows association between a stop in mining activities and night-lights in a panel of
district-year observations for the period 1992-2012. Dependent variable is Ln(0.01+Nighttime Lights Den-
sity per sq. km). ”District has been mined” is a dummy variable equal to 1, once a district had at least one
producing mine. ”Shutdown” is a dummy variable equal to 1, if all mines in a district shut down (it may
be temporary or permanent). ”Shutdown and not reopened by 2012” is a dummy variable equal to 1 if all
mines in a district shut down and none has reopened by 2012. Column (1) and (2) include all districts.
Column (3) excludes Bonthe District in Sierra Leone, where the closure was reportedly caused by rebels
during the civil war. Data from MinEx. Robust standard errors clustered by region are in parentheses. ***,
**, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Online Appendix: Robustness Tests

Table A1: Associations between Mineral Production and Night-Lights at District Level
(District-year observations dropped if production data is missing)

Intensive margin
(1) (2) (3)

Ln(Mineral production value in 1992 USD) 0.040** -0.083
(0.018) (0.065)

Ln(Mineral prod. value in 1992 commodity prices) 0.079** 0.163*
(0.032) (0.088)

Population density & rainfall Yes Yes Yes
Year Fixed Effects Yes Yes Yes
District Fixed Effects Yes Yes Yes
N 776 776 776
N(Districts/Regions/Countries) 126/77/28 126/77/28 126/77/28
R-squared adj. 0.985 0.985 0.986

Notes: In the main analysis we replaced missing values in production quantities by linear interpolation.
This may affect estimates of the intensive margin. This table is a re-estimation of Table 2 in the main text.
It shows associations between mining activities and night-lights in a panel of district-year observations
for the period 1992-2012. In this table, district-year observations are dropped if production quantity is
missing for at least one commodity for one mine in that district. This results in an unbalanced panel and
fewer observations. Coefficients in this table are larger and more significant, which can be attributed to
selection and measurement error. Dependent variable is Ln(0.01+Nighttime Lights Density per sq. km).
Column (1) expresses the mineral production value in 1992 constant USD. Column 2 expresses the mineral
production value in 1992 constant commodity prices. Column 3 includes both those indicators. Robust
standard errors clustered by region are in parentheses. ***, **, and * indicate statistical significance at the
1%, 5%, and 10% level, respectively.
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Table A2: Associations between Mineral Production and Night-Lights at District Level
(Excluding sparsely populated districts with less than four people per square kilometre)

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.032* -0.011
(0.016) (0.039)

Ln(Mineral production in 0.039* 0.050
1992 commodity prices) (0.020) (0.049)
Mineral production (1=yes) 0.567***

(0.131)
Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,579 1,579 1,579 70,615
N(Districts/Regions/Countries) 121/71/ 27 121/71/ 27 121/71/ 27 3410/496/42
R-squared adj. 0.980 0.980 0.980 0.947

Notes: This table is a re-estimation of Table 2 in the main text. It shows associations between mining
activities and night-lights in a panel of district-year observations for the period 1992-2012. In this table,
district-year observations are dropped if the population density is less than 4 (i.e. sparsely populated
districts are excluded). Dependent variable is Ln(0.01+Nighttime Lights Density per sq. km). Column (1)
expresses the mineral production value in 1992 constant USD. Column 2 expresses the mineral production
value in 1992 constant commodity prices. Column 3 includes both those indicators. Column 4 uses a
dummy variable equal to one if the district had a producing mine thereby using the full sample. Robust
standard errors clustered by region are in parentheses. ***, **, and * indicate statistical significance at the
1%, 5%, and 10% level, respectively.
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Table A3: Associations between Mineral Production and Night-Lights at District Level
(Excluding districts with zero luminosity from the sample)

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.021* -0.065
(0.011) (0.045)

Ln(Mineral production in 0.035** 0.102*
1992 commodity prices) (0.016) (0.056)
Mineral production (1=yes) 0.343***

(0.087)
Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,772 1,772 1,772 51,609
N(Districts/Regions/Countries) 136/79/28 136/79/28 136/79/28 3182/516/42
R-squared adj. 0.983 0.983 0.983 0.959

Notes: This table is a re-estimation of Table 2 in the main text. It shows associations between mining
activities and night-lights in a panel of district-year observations for the period 1992-2012. In this table,
district-year observations are dropped if the sum of light intensity values for the district is zero. Dependent
variable is Ln(0.01+Nighttime Lights Density per sq. km). Column (1) expresses the mineral production
value in 1992 constant USD. Column 2 expresses the mineral production value in 1992 constant commodity
prices. Column 3 includes both those indicators. Column 4 uses a dummy variable equal to one if the
district had a producing mine thereby using the full sample. Robust standard errors clustered by region
are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A4: Associations between Mineral Production and Night-Lights at District Level
(Weighting districts by district population size)

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.024* -0.061
(0.014) (0.047)

Ln(Mineral production in 0.038** 0.102*
1992 commodity prices) (0.018) (0.057)
Mineral production (1=yes) 0.554***

(0.117)
Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,802 1,802 1,802 76,335
N(Districts/Regions/Countries) 137/80/28 137/80/28 137/80/28 3,635/519/42
R-squared adj. 0.973 0.974 0.974 0.935

Notes: This table is a re-estimation of Table 2 in the main text. It shows associations between mining
activities and night-lights in a panel of district-year observations for the period 1992-2012. In this table,
the dependent variable is light density minus log population density (i.e. log luminosity per capita) based
on Cogneau and Dupraz (2014). Column (1) expresses the mineral production value in 1992 constant USD.
Column 2 expresses the mineral production value in 1992 constant commodity prices. Column 3 includes
both those indicators. Column 4 uses a dummy variable equal to one if the district had a producing mine
thereby using the full sample. Robust standard errors clustered by region are in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A5: Associations between Mineral Production and Night-Lights at District Level
(Weighting districts by the inverse of total number of districts in the country)

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.019 -0.089
(0.017) (0.070)

Ln(Mineral production in 0.036* 0.128*
1992 commodity prices) (0.019) (0.077)
Mineral production (1=yes) 0.898***

(0.204)
Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,802 1,802 1,802 76,335
N(Districts/Regions/Countries) 137/80/28 137/80/28 137/80/28 3,635/519/42
R-squared adj. 0.941 0.941 0.942 0.896

Notes: This table is a re-estimation of Table 2 in the main text. It shows associations between mining
activities and night-lights in a panel of district-year observations for the period 1992-2012. In this table,
the dependent variable (i.e. sum of nighttime lights density) is weighted by the inverse total number of
the districts within a country. Column (1) expresses the mineral production value in 1992 constant USD.
Column 2 expresses the mineral production value in 1992 constant commodity prices. Column 3 includes
both those indicators. Column 4 uses a dummy variable equal to one if the district had a producing mine
thereby using the full sample. Robust standard errors clustered by region are in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A6: Associations between Mineral Production and Night-Lights at District Level
(Grid-year observations)

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.106*** 0.086
(0.034) (0.086)

Ln(Mineral production in 0.116*** 0.025
1992 commodity prices) (0.038) (0.094)
Mineral production (1=yes) 0.701***

(0.096)
Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,200 1,200 1,200 171,633
N(Grids/Regions/Countries) 170/80/29 170/80/29 170/80/29 8173/366/41
R-squared adj. 0.957 0.957 0.957 0.934

Notes: In the main analysis we used district level administrative boundaries as units of interest. Admin-
istrative boundaries are endogenous by construction, as it is likely to be determined by local geographic
and demographic characteristics.This table is a re-estimation of Table 2 in the main text using grid level
boundaries corresponding to a spatial resolution of 0.5 x 0.5 degrees latitude and longitude. It shows as-
sociations between mining activities and night-lights in a panel of district-year observations for the period
1992-2012. Dependent variable is Ln(0.01+Nighttime Lights Density per sq. km). Column (1) expresses
the mineral production value in 1992 constant USD. Column 2 expresses the mineral production value in
1992 constant commodity prices. Column 3 includes both those indicators. Robust standard errors clus-
tered by region are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
level, respectively.
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Table A7: Associations between Mineral Production and Night-Lights at District Level
(controlling for year and region fixed effects)

Intensive margin Extensive margin
(1) (2) (3) (4)

Ln(Mineral production) 0.039* -0.125*
(0.022) (0.070)

Ln(Mineral production in 0.048* 0.183**
1992 commodity prices) (0.027) (0.090)

Mineral production (1=yes) 0.642***
(0.087)

Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Region Fixed Effects Yes Yes Yes Yes
N 1,802 1,802 1,802 76,335
N(Districts/Regions/Countries) 137/80/28 137/80/28 137/80/28 3,635/519/42
R-squared adj. 0.917 0.918 0.919 0.762

Notes: This table is a re-estimation of Table 2 in the main text, using region fixed effects instead of district
fixed effects. It shows associations between mining activities and night-lights in a panel of district-year
observations for the period 1992-2012. Dependent variable is Ln(0.01+Nighttime Lights Density per sq.
km). Column (1) expresses the mineral production value in 1992 constant USD. Column 2 expresses the
mineral production value in 1992 constant commodity prices. Column 3 includes both those indicators.
Column 4 uses a dummy variable equal to one if the district had a producing mine thereby using the full
sample. For a detailed variable description, see Data Appendix. Robust standard errors clustered by region
are in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A8: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts
(Excluding sparsely populated districts with less than four people per square kilometre)

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 -0.019 -0.029 -0.040 -0.029

(0.115) (0.068) (0.098) (0.081)
j = 1 0.075 0.030 0.088 -0.011

(0.127) (0.082) (0.111) (0.091)
j = 2 0.061 0.000 0.063 -0.052

(0.118) (0.088) (0.107) (0.098)
j = 3 0.065 0.019 -0.032 0.030

(0.142) (0.096) (0.131) (0.094)
j = 4 0.202 0.078 0.070 0.059

(0.151) (0.114) (0.167) (0.112)
j = 5 0.244 0.140 0.128 0.110

(0.161) (0.119) (0.174) (0.115)
j = 6 0.298* 0.214* 0.296 0.123

(0.166) (0.128) (0.221) (0.118)
j = 7 0.318* 0.245* 0.324 0.180

(0.179) (0.139) (0.235) (0.123)
j = 8 0.415** 0.433*** 0.465* 0.319*

(0.175) (0.158) (0.236) (0.162)
j = 9 0.480** 0.447*** 0.456* 0.343**

(0.197) (0.168) (0.248) (0.172)
j = 10 0.468** 0.460*** 0.514** 0.359**

(0.198) (0.168) (0.253) (0.167)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 68,140 68,830 67,914 68,592
N(Districts/Regions/Countries) 3298/494/42 3347/495/42 3289/496/42 3326/497/42
R-squared adj. 0.946 0.946 0.946 0.946

Notes: This table is a re-estimation of Table 5 in the main text. It reports the effect of mineral resource
discoveries on night-lights in a panel of district-year observations. In this table, district-year observations
are dropped if the population density is less than 4 (i.e. sparsely populated districts are excluded). De-
pendent variable is Ln(0.01+Nighttime Lights Density per sq. km). In column (1), the variable of interest
MDdt−j is a dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if
no discovery has been made and missing for every post-discovery year j > 10. In column (2), the dummies
are set to missing the year a second discovery was made in the same district. In column (3) and (4), the
dummy refers to giant and major deposit discoveries respectively. Because of the 10-year lag, the discov-
eries and numbers referred to by each dummy variable may vary. All regressions include year and district
fixed effects. We also control for population density and annual average rainfall. Robust standard errors in
parentheses are clustered by region. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
level, respectively.
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Table A9: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts
(Excluding districts with zero luminosity from the sample)

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 -0.015 -0.003 -0.007 -0.029

(0.075) (0.062) (0.100) (0.081)
j = 1 0.014 0.011 0.104 -0.012

(0.101) (0.075) (0.112) (0.093)
j = 2 -0.090 -0.054 0.085 -0.062

(0.109) (0.083) (0.107) (0.101)
j = 3 -0.086 -0.059 0.006 0.017

(0.126) (0.086) (0.133) (0.097)
j = 4 0.047 0.058 0.111 0.044

(0.108) (0.088) (0.170) (0.114)
j = 5 0.073 0.024 0.159 0.090

(0.124) (0.093) (0.175) (0.118)
j = 6 0.049 0.073 0.342 0.108

(0.120) (0.090) (0.222) (0.121)
j = 7 0.075 0.078 0.372 0.164

(0.123) (0.100) (0.238) (0.127)
j = 8 0.104 0.150 0.502** 0.310*

(0.118) (0.102) (0.237) (0.162)
j = 9 0.213 0.275** 0.496** 0.340*

(0.131) (0.115) (0.251) (0.175)
j = 10 0.170 0.244* 0.551** 0.342**

(0.138) (0.126) (0.260) (0.171)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 49,063 49,620 48,919 49,597
N(Districts/Regions/Countries)3,058/513/42 3,107/513/42 3,048/512/42 3,085/512/42
R-squared adj. 0.959 0.959 0.959 0.959

Notes: This table is a re-estimation of Table 5 in the main text. It reports the effect of mineral resource
discoveries on night-lights in a panel of district-year observations. In this table, district-year observa-
tions are dropped if the sum of light intensity values for the district is zero. Dependent variable is
Ln(0.01+Nighttime Lights Density per sq. km). In column (1), the variable of interest MDdt−j is a dummy
variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if no discovery has been
made and missing for every post-discovery year j > 10. In column (2), the dummies are set to missing the
year a second discovery was made in the same district. In column (3) and (4), the dummy refers to giant and
major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers referred to
by each dummy variable may vary. All regressions include year and district fixed effects. We also control
for population density and annual average rainfall. Robust standard errors in parentheses are clustered by
region. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A10: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts
(Weighting district areas by its population size i.e. population density times surface area)

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 -0.024 -0.028 -0.032 -0.024

(0.106) (0.063) (0.098) (0.081)
j = 1 0.060 0.024 0.100 -0.005

(0.118) (0.075) (0.111) (0.091)
j = 2 0.046 -0.008 0.075 -0.043

(0.111) (0.081) (0.106) (0.098)
j = 3 0.048 0.006 -0.015 0.039

(0.132) (0.087) (0.131) (0.094)
j = 4 0.174 0.068 0.085 0.070

(0.141) (0.104) (0.167) (0.111)
j = 5 0.212 0.114 0.146 0.122

(0.151) (0.109) (0.174) (0.114)
j = 6 0.257 0.190 0.314 0.134

(0.157) (0.118) (0.220) (0.118)
j = 7 0.277 0.218* 0.342 0.190

(0.169) (0.126) (0.235) (0.123)
j = 8 0.363** 0.391*** 0.484** 0.331**

(0.167) (0.147) (0.235) (0.161)
j = 9 0.427** 0.402*** 0.477* 0.355**

(0.187) (0.155) (0.247) (0.171)
j = 10 0.430** 0.431*** 0.538** 0.373**

(0.187) (0.156) (0.253) (0.166)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 73,428 74,178 73,150 73,828
N(Districts/Regions/Countries)3,560/516/42 3,557/516/42 3,493/515/42 3,530/515/42
R-squared adj. 0.933 0.933 0.933 0.933

Notes: This table is a re-estimation of Table 5 in the main text. It reports the effect of mineral resource
discoveries on night-lights in a panel of district-year observations. In this table, the dependent variable is
light density minus log population density (i.e. log luminosity per capita) based on Cogneau and Dupraz
(2014). In column (1), the variable of interest MDdt−j is a dummy variable equal to 1 if a giant or major
mineral deposit was discovered j years ago, 0 if no discovery has been made and missing for every post-
discovery year j > 10. In column (2), the dummies are set to missing the year a second discovery was
made in the same district. In column (3) and (4), the dummy refers to giant and major deposit discoveries
respectively. Because of the 10-year lag, the discoveries and numbers referred to by each dummy variable
may vary. All regressions include year and district fixed effects. We also control for population density
and annual average rainfall. Robust standard errors in parentheses are clustered by region. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A11: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts
(Weighting districts by the inverse of total number of districts in the country)

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 -0.039 -0.051 0.126 -0.095

(0.235) (0.135) (0.306) (0.167)
j = 1 0.131 0.043 0.487 -0.107

(0.279) (0.191) (0.309) (0.218)
j = 2 0.240 -0.023 0.500 -0.205

(0.289) (0.195) (0.330) (0.214)
j = 3 0.042 0.083 0.179 0.155

(0.315) (0.192) (0.328) (0.199)
j = 4 0.249 0.008 0.273 -0.006

(0.318) (0.226) (0.404) (0.223)
j = 5 0.296 0.173 0.554 0.108

(0.339) (0.220) (0.392) (0.223)
j = 6 0.464 0.348 0.692 0.218

(0.298) (0.214) (0.421) (0.190)
j = 7 0.445 0.420* 0.747* 0.321

(0.322) (0.241) (0.428) (0.231)
j = 8 0.709** 0.677** 0.939** 0.540*

(0.331) (0.264) (0.442) (0.277)
j = 9 0.672* 0.529 0.801* 0.417

(0.380) (0.326) (0.485) (0.366)
j = 10 0.706* 0.658** 0.950* 0.520

(0.384) (0.316) (0.484) (0.344)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 73,428 74,178 73,150 73,828
N(Districts/Regions/Countries)3,560/516/42 3,557/516/42 3,493/515/42 3,530/515/42
R-squared adj. 0.892 0.892 0.892 0.892

Notes: This table is a re-estimation of Table 5 in the main text. It reports the effect of mineral resource
discoveries on night-lights in a panel of district-year observations. In this table, the dependent variable (i.e.
sum of nighttime lights density) is weighted by the inverse total number of the districts within a country.
In column (1), the variable of interest MDdt−j is a dummy variable equal to 1 if a giant or major mineral
deposit was discovered j years ago, 0 if no discovery has been made and missing for every post-discovery
year j > 10. In column (2), the dummies are set to missing the year a second discovery was made in the
same district. In column (3) and (4), the dummy refers to giant and major deposit discoveries respectively.
Because of the 10-year lag, the discoveries and numbers referred to by each dummy variable may vary.
All regressions include year and district fixed effects. We also control for population density and annual
average rainfall. Robust standard errors in parentheses are clustered by region. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A12: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts
(Grid-year observation)

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 0.160* 0.078 0.088 0.071

(0.090) (0.055) (0.111) (0.061)
j = 1 0.234*** 0.153** 0.078 0.152**

(0.088) (0.065) (0.097) (0.074)
j = 2 0.289*** 0.144* -0.050 0.162**

(0.108) (0.075) (0.129) (0.082)
j = 3 0.271** 0.187** -0.113 0.240***

(0.109) (0.079) (0.123) (0.092)
j = 4 0.335*** 0.181** -0.124 0.246**

(0.126) (0.091) (0.131) (0.101)
j = 5 0.409*** 0.308*** 0.157 0.385***

(0.144) (0.100) (0.106) (0.118)
j = 6 0.457*** 0.323*** 0.259* 0.389***

(0.138) (0.099) (0.134) (0.121)
j = 7 0.435*** 0.385*** 0.415*** 0.416***

(0.148) (0.114) (0.151) (0.145)
j = 8 0.667*** 0.654*** 0.695*** 0.656***

(0.147) (0.119) (0.180) (0.152)
j = 9 0.647*** 0.681*** 0.777*** 0.657***

(0.173) (0.137) (0.219) (0.176)
j = 10 0.695*** 0.742*** 0.907*** 0.681***

(0.158) (0.130) (0.221) (0.163)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Grid Fixed Effects Yes Yes Yes Yes
N 168,244 169,203 167,949 168,861
N(Grids/Regions/Countries) 8,022/366/41 8,088/366/41 8,009/366/41 8,059/366/41
R-squared adj. 0.932 0.932 0.932 0.932

Notes: In the main analysis we used district level administrative boundaries as units of interest. Admin-
istrative boundaries are endogenous by construction, as it is likely to be determined by local geographic
and demographic characteristics. This table is a re-estimation of Table 5 in the main text using grid level
boundaries corresponding to a spatial resolution of 0.5 x 0.5 degrees latitude and longitude. It reports the
effect of mineral resource discoveries on night-lights in a panel of district-year observations. Dependent
variable is Ln(0.01+Nighttime Lights Density per sq. km). In column (1), the variable of interest MDdt−j is
a dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if no discov-
ery has been made and missing for every post-discovery year j > 10. In column (2), the dummies are set to
missing the year a second discovery was made in the same district. In column (3) and (4), the dummy refers
to giant and major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers
referred to by each dummy variable may vary. All regressions include year and district fixed effects. We
also control for population density and annual average rainfall. Robust standard errors in parentheses are
clustered by region. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A13: Effect of Mineral Resource Discoveries on Night-Lights in Virgin Districts
(controlling for year and region fixed effects)

First Single, First Giant Major
MDdt−j : Mineral discovery Discoveries Discoveries Discoveries Discoveries
made in year t − j (1) (2) (3) (4)
j = 0 -0.138 -0.138 -0.236 -0.095

(0.129) (0.129) (0.235) (0.151)
j = 1 -0.057 -0.041 -0.032 -0.063

(0.128) (0.129) (0.209) (0.154)
j = 2 -0.027 -0.009 0.142 -0.101

(0.136) (0.136) (0.222) (0.160)
j = 3 -0.002 0.015 0.073 -0.035

(0.129) (0.132) (0.230) (0.146)
j = 4 -0.004 0.011 0.208 -0.092

(0.115) (0.115) (0.184) (0.146)
j = 5 0.076 0.081 0.309 -0.034

(0.121) (0.119) (0.209) (0.150)
j = 6 0.172 0.190 0.476** 0.016

(0.124) (0.121) (0.209) (0.167)
j = 7 0.250** 0.254** 0.484** 0.130

(0.124) (0.126) (0.225) (0.161)
j = 8 0.399*** 0.409*** 0.675*** 0.236

(0.146) (0.151) (0.228) (0.198)
j = 9 0.430*** 0.455*** 0.673*** 0.271

(0.146) (0.150) (0.236) (0.187)
j = 10 0.460*** 0.491*** 0.730*** 0.265

(0.142) (0.151) (0.214) (0.190)
Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Region Fixed Effects Yes Yes Yes Yes
N 74,234 74,178 73,150 73,828
N Discoveries [66, 79] [57, 77] [21, 28] [38, 55]
N(Districts/Regions/Countries)3,560/516/42 3,557/516/42 3,493/515/42 3,530/515/42
R-squared adj. 0.756 0.756 0.757 0.756

Notes: This table is a re-estimation of Table 5, using region fixed effects instead of district fixed effects.
The table reports the effect of mineral resource discoveries on night-lights in a panel of district-year ob-
servations. Districts with pre-existing mining activities were dropped from the regression. In column (1),
the variable of interest MDdt−j is a dummy variable equal to 1 if a giant or major mineral deposit was
discovered j years ago, 0 if no discovery has been made and missing for every post-discovery year j > 10.
In column (2), the dummies are set to missing the year a second discovery was made in the same district.
In column (3) and (4), the dummy refers to giant and major deposit discoveries respectively. Because of
the 10-year lag, the discoveries and numbers referred to by each dummy variable may vary. Coefficients
in column (1) and (2) show the same order of magnitude as Table 5. In contrast, coefficients in column (3)
and (4) indicate a somewhat larger and smaller effect respectively. All regressions include year and region
fixed effects. We also control for population density and annual average rainfall. Robust standard errors in
parentheses are clustered by region. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
level, respectively.
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